# Question 7.2: A single story shear frame shown in Fig. 7.4a is subjected t......

A single story shear frame shown in Fig. 7.4a is subjected to arbitrary excitation force specified in Fig. 7.4b. The rigid girder supports a load of 25.57 kN/m.

Assume the columns bend about their major axis and neglect their mass, and assuming damping factor of ρ = 0.02 for steel structures, E = 200 GPa. Write a computer program for the central difference method to evaluate dynamic response for the frame. Plot displacement u(t), velocity v(t) and acceleration a(t) in the interval 0 ≤ t ≤ 5 s.

Table 7.3 Central difference method

 $\ddot{u}_0=\frac{F_0-c \dot{u}_0-k u_0}{m}$ Step 1 $u_{-1}=u_0-\Delta t\left(\dot{u}_0\right)+\frac{\left(\Delta t^2\right)}{2} \ddot{u}_0$ Step 2 $\hat{k}=\frac{m}{\Delta t^2}+\frac{c}{2 \Delta t}$ Step 3 $a=\frac{m}{\Delta t^2}-\frac{c}{2 \Delta t}$ Step 4 $b=k-\frac{2 m}{(\Delta t)^2}$ Step 5 Calculation of time step i $\hat{F}_i=F_i-a u_{i-1}-b u_i$ Step 6 $u_{i+1}=\hat{F}_i / \hat{k}$ Step 7 Calculate $\dot{u}_i=\frac{u_{i+i}-u_{i-1}}{2 \Delta t}$ $\ddot{u}_i=\frac{u_{i+i}-2 u_i-u_{i-1}}{\Delta t^2}$ Step 8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.

(a) The total load on the beam = 25.57 × 10 = 255.7 kN

$\text { Mass }=m=\frac{255.7 \times 10^3}{9.81}=26065 kg$

(b) Stiffness of the frame (shear frame)
Left column base fixed

$k_1=\frac{12 E I}{L^3}=\frac{12 \times 200 \times 10^9 \times 9874.6 \times 10^4}{5^3 \times 10^{12}}=1895923 N / m$

Right column base pinned

$k_2=\frac{3 E I}{L^3}=473981 N / m$

Hence total stiffness = 2369904 N/m
(c) Dynamic characteristics of the structure

\begin{aligned}& \omega_n=\sqrt{\frac{k}{m}}=\sqrt{\frac{2369904}{26065}}=9.53 rad / s \\& T=\frac{2 \pi}{\omega_n}=\frac{2 \pi}{9.52}=0.659 s\end{aligned}

(d) Time step

$\Delta t \angle \Delta t_c r=\frac{T}{\pi}=\frac{0.659}{\pi}=0.209$

or

$\Delta t=\frac{T}{10}=\frac{0.659}{\pi}=0.659 s$

Use time step of 0.05 s

(e) $C_c=2 \sqrt{ km }$

\begin{aligned}C & =\rho 2 \sqrt{ } km \\& =2 \times 0.02 \sqrt{ } 2369904 \times 26065 \\& =9941.5 N . sec / m\end{aligned}

Table 7.4 gives the displacement, velocity and acceleration up to 1 s.
The displacement, velocity and acceleration response are shown in Fig.7.5. The computer program in MATLAB is given below.

Program 7.2: MATLAB program for dynamic response of SDOF using central difference method

Table 7.4 values of u,v and a for Example 7.2

 a V U t a V U t 0.3594 -0.0889 0.0015 0.55 0.7673 0 0 0 0.7886 -0.0602 -0.0025 0.60 0.6664 0.0358 0.001 0.05 0.8801 -0.0185 -0.0045 0.65 0.4174 0.0629 0.0036 0.10 0.7718 0.0228 -0.0044 0.70 0.0791 0.0754 0.0073 0.15 0.4717 0.0544 -0.0023 0.75 -0.2700 0.0704 0.0110 0.20 0.1062 0.0693 0.0011 0.80 -0.5528 0.0500 0.0143 0.25 -0.2960 0.0646 0.0047 0.85 -0.7052 0.0185 0.0161 0.30 -0.6237 0.0416 0.0075 0.90 -0.6959 -0.0165 0.0162 0.35 -0.8051 0.0059 0.0088 0.95 -0.6821 -0.0510 0.0145 0.40 -0.7256 -0.0324 0.0081 0.100 -0.5750 -0.0809 0.0111 0.45 -0.0831 -0.0831 0.0064 0.50
The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

## Script File

% **********************************************************
% DYNAMIC RESPONSE USING CENTRAL DIFFERENCE METHOD
% **********************************************************
ma=26065;

k=2369904.0;
wn=sqrt(k/ma)
r=0.02;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;
tt=5;
n=100;

n1=n+1
dt=tt/n;
td=.9;
jk=td/dt;
%***********************************************************

%***********************************************************
for m=1:n1
p(m)=0.0;
end
t=-dt
for m=1:8;
t=t+dt;
p(m)=20000;
end
p(9)=16000.0
for m=10:12
t=t+dt
p(m)=12000.0
end
for m=13:19
t=t+dt
p(m)=12000.0*(1-(t-0.6)/.3)
end
an(1)=(p(1)-c*v(1)-k*u(1))/ma
up=u(1)-dt*v(1)+dt*dt*an(1)/2
kh=ma/(dt*dt)+c/(2.0*dt)
a=ma/(dt*dt)-c/(2.0*dt)
b=k-2.0*ma/(dt*dt)
f(1)=p(1)-a*up-b*u(1)
u(2)=f(1)/kh
for m=2:n1
f(m)=p(m)-a*u(m-1)-b*u(m)
u(m+1)=f(m)/kh
end
v(1)=(u(2)-up)/(2.0*dt)
for m=2:n1
v(m)=(u(m+1)-u(m-1))/(2.0*dt)
an(m)=(u(m+1)-2.0*u(m)+u(m-1))/(dt*dt)
end
n1p=n1+1
for m=1:n1p
s(m)=(m-1)*dt
end
for m=1:n1
x(m)=(m-1)*dt
end
figure(1);
plot(s,u,‘k’);xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(x,v,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)
figure(3);
plot(x,an,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sq.sec’)
title(‘ dynamic response’)

Question: 7.4

## The shear frame shown in Fig. 7.9a is subjected to the exponential pulse force shown in Fig 7.9b. Write a computer program for the average acceleration method (incremental formulation) to evaluate the dynamic response of the frame. Plot the time histories for displacement u(t), velocity u(t ) and ...

I for ISWB 600 @1337 = 106198.5e^4mm^4[/lat...
Question: 7.5

## A single storey shear frame shown in Fig 7.15a is subjected to El Centro ground excitation as shown in Fig. 7.15c. The simplified model is shown in Fig. 7.15b. The rigid girders support a load of 25.57 kN/m. Assuming a damping factor ρ = 0.02 for steel frame, E = 200 GPa. Write a computer program ...

\begin{aligned}& \omega_n=9.53  rad / s...
Question: 7.6

## Solve Example 7.4 by Wilson’s proposed procedure with different data as shown below. m = 0.065 k = 7.738 ρ = 0.07 F0 = 10 ...

The equation of motion is written as m \ddo...
Question: 7.1

## The water tank shown in Fig.7. 2a is subjected to the blast loading illustrated in Fig 7.2b. Write a computer program in MATLAB to numerically evaluate the dynamic response of the tower by interpolation of the excitation. Plot the displacement u(t) and velocity u(t ) response in time interval ...

K = 40913 kN/m = 40931 × 10³ N/m m = 445.5 × 1000/...
Question: 7.9

## A water tank shown in Fig. 7.25a is subjected to a dynamic load shown in Fig. 7.25b. Evaluate numerically using the Duhamel integral for the response. ...

mass = 400 × 1000/9.81 = 40774.7 kg k = 35000 × 10...
Question: 7.8

## Construct a response spectrum for the symmetric triangle shown in Fig. 7.24a. Plot DMF vs td/T in the integral 0 ≤ td/T ≤ 10. Assume ρ = 0, td = 2 s. A MATLAB program for drawing response spectrum is given in Chapter 6. The response curve is shown in Fig. 7.24b. ...

A family of response spectrum curves or response s...
Question: 7.7

## A shear frame structure shown in Fig. 7.4a is subjected to time varying force shown in Fig. 7.21. Evaluate the elastic and elasto-plastic response of the structure by the Newmark method without equilibrium iterations. ...

Given W = 133.5 kN \begin{aligned}& \te...