Chapter 4

Q. 4.3

A stream function in a 2-D flow is y = 2xy. Show that the flow is irrotational. Also determine the corresponding velocity potential Φ .

Step-by-Step

Verified Solution

Writing the Laplace equation (4.18) of stream function in 2-D, we have

\left[\frac{\pmb{\delta} ^{2}\Psi }{\pmb{\delta} x^{2} }+\frac{\pmb{\delta} ^{2}\Psi }{\pmb{\delta} y^{2} } \right]=0                                                                      (i)

Substituting the value of Ψ in Eq. (i), we get

\left[\frac{\pmb{\delta} ^{2}(2xy) }{\pmb{\delta} x^{2} }+\frac{\pmb{\delta} ^{2}(2xy) }{\pmb{\delta} y^{2} } \right]=0

Hence, the flow is irrotational.
We know that

\frac{\pmb{\delta} \pmb{\phi} }{\pmb{\delta} x}=-u =\frac{\pmb{\delta} \pmb{\Psi} }{\pmb{\delta} y}=\frac{\pmb{\delta} (2xy)}{\pmb{\delta} y}=2x                                                (ii)

and                    \frac{\pmb{\delta} \pmb{\phi} }{\pmb{\delta} y}=-v =-\frac{\pmb{\delta} \pmb{\Psi} }{\pmb{\delta} x}=-\frac{\pmb{\delta} (2xy)}{\pmb{\delta} x}=-2y                          (iii)

Integrating Eq. (ii), we get

                                             \pmb{\phi} =x^{2}+f(y)                              (iv)

Differentiating Eq. (iv) with respect to y, we get

                                              \frac{\pmb{\delta} \pmb{\phi} }{\pmb{\delta} y}=\acute{f}(y)                                       (v)

Equating dΦ/dy from Eqs. (iii) and (v), we get

                                         \acute{f}(y)=- 2y                                        (vi)

Integrating Eq. (vi), we get

{f}(y)=- y^{2}+C

where C is a constant of integration.
Substituting f(y) in Eq. (iv), we get

\pmb{\phi}=x^{2}-y^{2}+C