Holooly Transparent Logo 2023

Chapter 4

Q. 4.3

Q. 4.3

A stream function in a 2-D flow is y = 2xy. Show that the flow is irrotational. Also determine the corresponding velocity potential Φ .

Step-by-Step

The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Writing the Laplace equation (4.18) of stream function in 2-D, we have

\left[\frac{\pmb{\delta} ^{2}\Psi }{\pmb{\delta} x^{2} }+\frac{\pmb{\delta} ^{2}\Psi }{\pmb{\delta} y^{2} } \right]=0                                                                      (i)

Substituting the value of Ψ in Eq. (i), we get

\left[\frac{\pmb{\delta} ^{2}(2xy) }{\pmb{\delta} x^{2} }+\frac{\pmb{\delta} ^{2}(2xy) }{\pmb{\delta} y^{2} } \right]=0

Hence, the flow is irrotational.
We know that

\frac{\pmb{\delta} \pmb{\phi} }{\pmb{\delta} x}=-u =\frac{\pmb{\delta} \pmb{\Psi} }{\pmb{\delta} y}=\frac{\pmb{\delta} (2xy)}{\pmb{\delta} y}=2x                                                (ii)

and                    \frac{\pmb{\delta} \pmb{\phi} }{\pmb{\delta} y}=-v =-\frac{\pmb{\delta} \pmb{\Psi} }{\pmb{\delta} x}=-\frac{\pmb{\delta} (2xy)}{\pmb{\delta} x}=-2y                          (iii)

Integrating Eq. (ii), we get

                                             \pmb{\phi} =x^{2}+f(y)                              (iv)

Differentiating Eq. (iv) with respect to y, we get

                                              \frac{\pmb{\delta} \pmb{\phi} }{\pmb{\delta} y}=\acute{f}(y)                                       (v)

Equating dΦ/dy from Eqs. (iii) and (v), we get

                                         \acute{f}(y)=- 2y                                        (vi)

Integrating Eq. (vi), we get

{f}(y)=- y^{2}+C

where C is a constant of integration.
Substituting f(y) in Eq. (iv), we get

\pmb{\phi}=x^{2}-y^{2}+C

Related Answered Questions