Chapter 4

Q. 4.7

A two-spool turbojet engine has the following data:

Fuel heating value is 45,000 kJ/kg.

A. It is required to calculate
1. The temperature and pressure at the inlet and outlet of each module of the engine
2. Fuel-to-air ratio for both the combustion chamber and afterburner
3. The exit area for both operative and inoperative afterburner
4. The specific thrust and the TSFC
5. The propulsive, thermal, and overall efficiency
B. Recalculate as above but when the airplane powered by the above engine is flying at 8 km altitude with a Mach number 2.04. The maximum temperature at the afterburner is increased to 2000 K and the air mass flow rate is increased to 314.64 kg/s.

In both cases the nozzle is unchoked.

 

\pmb{\eta_{\text{d}}} \pmb{\eta_{\text{c}1}} \\ \pmb{\eta_{\text{c}2}} \pmb{\eta_{\text{cc}}} \pmb{\eta_{\text{t}1}} \\ \pmb{\eta_{\text{t}2}} \pmb{\eta_{\text{ab}}} \pmb{\eta_{\text{n}}} \pmb{\pi_{{\text{c}}_{1}}} \pmb{\pi_{{\text{c}}_{2}}} \pmb{\Delta P_{\text{cc}}} \pmb{\Delta P_{\text{cc}}} \pmb{\text{TIT}} \\ \pmb{\text{(K)}} \pmb{T_\text{max}} \\ \pmb{\text{(K)}} \pmb{A_{\text{i}}(\text{m}^2)} \pmb{\dot{\text{m}}} \\ \pmb{\text{(kg/s)}}
0.9 0.88 0.95 0.94 0.95 0.96 3.35 4.65 0.03 0.05 1200 1500 0.9519 186

Step-by-Step

Verified Solution

Using the previous equations, the results are arranged in the following table:

 

Properties Sea Level Altitude 8 km (26,264 ft)
T_{\text{a}}(\text{K}) 288.16 236.23
P_{\text{a}}(\text{Pa}) 1.013125 \times 10 ^5 3.5651 \times 10^4
M 0 2.04
V(m/s) 0 628.5893
T_{02}(\text{K}) 288.16 432.9772
P_{02}(\text{Pa}) 1.013125 \times 10 ^5 4.862 \times 10^4
P_{03} 3.3944 \times 10^5 1.6288 \times 10^5
T_{03} 442.8617 635.3745
P_{04} 1.5784 \times 10^6 7.5739 \times 10^5
T_{04} 686.9657 1032.2
P_{05} 1.531 \times 10^6 7.3467 \times 10^5
T_{05} (TIT) 1200 1200
P_{06} 6.0126 \times 10^5 1.6603 \times 10^5
T_{06} 964.9536 849.7425
P_{07} 3.4105 \times 10^5 6.0315 \times 10^4
T_{07} 854.0723 671.0998
P_{08} 3.2399 \times 10^5 6.0315 \times 10^4
T_{08} \ (T_{\text{max}}) \text{Operative A/B} = 1500 \\ \text{Inoperative A/B}=T_{07}=854.0723 Operative A/B = 2000
\text{Inoperative A/B }= T_{07} = 671.0998
P_9=P_{\text{a}} 1.013125 \times 10^5 3.5651 \times 10^4
T_9 1136.9 1785.2
V_{\text{e}}(\text{m/s}) 913.1156 702.2306
T (N) \text{Operative A/B }= 1.7582 \times 10^5 \\ \text{Inoperative A/B} = 1.7266 \times 10^5 \text{Operative A/B }= 3.3388 \times 10^4 \\ \text{Inoperative A/B} = 2.4987 \times 10^4
\eta_{\text{p}} 0 0.9222
\eta_{\text{th}} 0.5977 0.1922
\eta_{\text{0}} 0 0.1802
ƒ 0.0166 0.0082
f_{\text{ab}} 0.0186 0.038
A_{\text{e}}(\text{m}^2) Operative A/B = 0.4381
Inoperative A/B = 0.4032
Operative A/B = 1.0424
Inoperative A/B = 1.0045
4.1617