Question 3.6: (a) Write a spreadsheet program to solve the equation mz+ cz......

(a) Write a spreadsheet program to solve the equation m \ddot{z} + c \dot{z} + kz = F by the central difference method.

(b) Plot the displacement time history, z, with F = constant = 100 N; initial conditions z_{0} = \dot{z}_{0} = 0, and

m = 1 kg;

k = 10 000 N/m;

c = 20 N/m/s

Compare the plot with the exact answer from the expression derived in Example 2.3.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Substituting Eqs (3.31) and (3.32) into the equation of motion, m\ddot{z} + c \dot{z} + kz = F, we have

z_{j+1} – z_{j-1} = 2h\dot{z}_{j}          or rearranging:        \dot{z}_{j} = \frac{z_{j+1} – z_{j-1}}{2h}                 (3.31)

z_{j+1} + z_{j-1} = 2z_{j} + h^{2}\ddot{z}_{j}          or rearranging:        \ddot{z}_{j} = \frac{z_{j+1} – 2z_{j} + z_{j-1}}{h^{2}}                 (3.32)

m\left(\frac{z_{j+1} – 2z_{j} + z_{j-1}}{h^{2}}\right) + c\left(\frac{z_{j+1} – z_{j-1}}{2h}\right) + kz_{j} = F_{j}             (A)

Rearranging,

z_{j+1} = a_{1}z_{j} + a_{2}z_{j-1} + a_{3}F_{j}          (B)

where

\begin{aligned}a_{1} = \frac{2m – kh^{2}}{\frac{1}{2}ch + m}, && a_{2} = \frac{\frac{1}{2}ch – m}{\frac{1}{2}ch + m} && a_{3} = \frac{h^{2}}{\frac{1}{2}ch + m} &&& (C) \end{aligned}

The value of z_{-1} is taken from Eq. (3.26), i.e.

z_{j-1}=z_{j}-h\dot{z}_{j} + \frac{h^{2}}{2!}\ddot{z}_{j}-\frac{h^{3}}{3!} \overset{…}{z} _{j} +  …            (3.26)

(where ! indicates a factorial value, e.g. 3! = 3×2×1 = 6)

z_{-1} = z_{0} – h\dot{z}_{0} + \frac{h^{2}}{2}\ddot{z}_{0}

where

z_{0} = \dot{z}_{0} = 0  and      \ddot{z}_{0} = \frac{F_{0}}{m} – \frac{c}{m}\dot{z}_{0} – \frac{k}{m}z_{0}

from Eq. (3.34). Therefore,

\ddot{z}_{0} = \frac{F_{0}}{m} – \frac{c}{m}\dot{z}_{0} – \frac{k}{m}z_{0}           (3.34)

z_{-1} = 0-0+\frac{h^{2}F_{0}}{2m}= \frac{h^{2}F_{0}}{2m}                (D)

Table 3.4 is a spreadsheet to calculate z.

The constants a_{1}, a_{2}  \mathrm{and}  a_{3} are given by Eqs (C).

(b) Inserting the values of m, k and c, and initial conditions z_{0} = \dot{z}_{0} = 0, Fig. 3.9 is a plot of z using a step length h = 0.005 s, compared with the exact solution from the expression derived in Example 2.3.

Table 3.4 Spreadsheet for Central Difference Method
j t_{j} F_{j} z_{j}
-1 =hj = \frac{h^{2}F_{0}}{2m}
0 =hj = F_{0} = 0
1 =hj = F_{1} = a_{1} z_{0}+a_{2} z_{-1}+a_{3} F_{0}
2 = F_{2} = a_{1} z_{1}+a_{2} z_{-1}+a_{3} F_{1}
3
3.9

Related Answered Questions