# Question 4.1: Derivation of the Frictional Loss Term, hf , for Steady Lami......

Derivation of the Frictional Loss Term, $\rm h_f$ , for Steady Laminar Flow in Smooth Pipes

 Concept Assumptions Sketch • Combine Poiseuille flow solution with extended Bernoulli • As stated, with $\rm L >> L_{entrance}$ • Poiseuille flow • Constant cross sectional pipes • Constant properties and velocity average
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.

(A) Check entrance length and assume that $\rm Re_D$ < 2,300

• Clearly, for any given data set $\rm L_{entrance} = 0.05Re_D \,D$ should be much less than $\rm L_{pipe}$ .

(B) Poiseuille flow

$\vec{\bf v}=\rm [u(r),0,0]~~\text{and}~~\partial p/\partial x=-\frac{\Delta p}{L}$ = constant

$\rm{v}={\frac{1}{\mathrm{A}}}\int\mathrm{u}(\mathrm{r})\;\mathrm{d}\mathrm{A}={\frac{1}{\pi\,\mathrm{r}_{0}^{2}}}\int\mathrm{u}_{\mathrm{max}}\left[1-\left\lgroup {\frac{\mathrm{r}}{\mathrm{r}_{0}}}\right\rgroup ^{2}\right](2\pi\,\mathrm{r}\;\mathrm{d}\mathrm{r})$

$={\frac{1}{2}}\mathrm{u}_{\mathrm{max}}={\frac{\mathrm{r}_{0}^{2}}{8\mu}}\left\lgroup{\frac{\Delta\mathrm{p}}{\mathrm{L}}}\right\rgroup =\mathrm{Q}/(\pi\,\mathrm{r}_{0}^{2})$              (E.4.1.1a)

$\tau_{\mathrm{wall}}=\mu\left.{\frac{\mathrm{du}}{\mathrm{dr}}}\right|_{\mathrm{r}=r_{0}}=4\mu\ \mathrm{v}/\ \mathrm{r}_{0}={\frac{\mathrm{r}_{0}}{2}}\left\lgroup \frac{\Delta\mathrm{p}}{ L}\right\rgroup$                                  (E.4.1.1b)

(C) Extended Bernoulli equation applied to the pipe centerline from points ➀–➁

$\rm \left\lgroup{\frac{\mathrm{p}}{\mathrm{\rho g}}}+{\frac{\mathrm{v}^{2}}{2\mathrm{g}}}+z\right\rgroup _{➀}=\left\lgroup{\frac{\mathrm{p}}{\mathrm{\rho g}}}+{\frac{\mathrm{v}^{2}}{2\mathrm{g}}}+z\right\rgroup _{➁}+{\mathrm{h}_{\mathrm{loss}}}$                            (E.4.1.2)

$\rm h_{loss}\equiv h_L=h_{\underset{}{friction}}+h_{\underset{}{form} }$                                  (E.4.1.3a)

•With Δz = 0, $\rm v_1 = v_2$

and $\rm h_{form}\approx 0, h_{friction}=h_f=\frac{\Delta p}{\rho g}$                          (E.4.1.3b)

(D) Combine (B) and (C) results

• From $\begin{array}{c c}\rm{{\mathrm{v}=\frac{r_{0}^{2}}{8\mu}\left\lgroup\frac{\Delta{ p}}{ L}\right\rgroup ;}}&{{\mathrm{~r_{0}=D/2}}}\end{array}$                                  (E.4.1.4a)

we have

Δp = 32μ v L/D²                           (E.4.1.4b)

As a result,

$\mathrm{h}_{\mathrm{f}}={\frac{32\mathrm{\mu}\;{\mathrm{L}}\;\mathrm{v}}{\rho\mathrm{g}\;\mathrm{D}^{2}}}:=\frac{128\mathrm{\mu}\;{\mathrm{L}}\;\mathrm{Q}}{\pi\;\rho\mathrm{g}\;\mathrm{D}^{4}}$                          (E.4.1.5a, b)

Now, defining the friction factor f (Darcy–Weisbach) as:

$\mathrm{f}\equiv\frac{8\tau_{\mathrm{w}}}{\mathrm{\rho{\mathrm{{v}}}^{2}}}:=\frac{2\mathrm{D}}{\mathrm{\rho{\mathrm{{v}}}^{2}}}\left\lgroup\frac{\Delta\mathrm{p}}{\mathrm{L}}\right\rgroup$                            (E.4.1.6a)

so that

$\rm\Delta{ p}={f}~\frac{\rho{ v}^{2}}{2}\left\lgroup\frac{{ L}}{ D}\right\rgroup$                            (E.4.1.6b)

and hence we can express the frictional loss also as:

$\rm h_{\mathrm{f}}={\frac{\Delta{ p}}{\rho g}}=f{\frac{{ v}^{2}}{2{{{g}}}}}{\left\lgroup{\frac{{ L}}{{ D}}}\right\rgroup }$                          (E.4.1.7)

(E) Notes

• With $\tau_{ w}=4\mu\,\nu /{r}_{0}\,,\,\,\,f_{\mathrm{laminar}}=\frac{32\mu \nu }{r_{0}\,\rho\,\nu ^{2}}=\frac{64}{\mathrm{Re}_{D}}$                        (E.4.1.8, 9)

• From a 1-D force balance for any fully-developed flow regime (see momentum RTT) we obtain (with $\rm v_{in} = v_{out}$ ):

$\Sigma \mathrm{F}_{\mathrm{x}}\,=\,\underbrace{\Delta{\rm p}(\pi r_{0}^{2}\,)}_{\mathrm{F_{\mathrm{net,pressure}}}}-\underbrace{\rho\mathrm{g}(\pi r_{0}^{2}\,)\mathrm{L}\,\mathrm{sin}\,\phi}_{\rm W_x}-\underbrace{\tau_{\mathrm{w}}\,(2\pi\mathrm{r}_{0}^{2}\,)}_{\mathrm{F_{viscous}}}$                              (E.4.1.10)

so that with L sin $\phi$ = − Δz :

$\mathrm{h}_{\mathrm{f}}=\Delta {\rm Z}+{\frac{\Delta\mathrm{p}}{\mathrm{\rho}{\mathrm{g}}}}={\frac{2\tau_{\mathrm{w}}}{\mathrm{\rho}{\mathrm{g}}}}\,{\frac{\mathrm{L}}{\mathrm{r}_{0}}}={\frac{4\tau_{\mathrm{w}}}{\mathrm{\rho}{\mathrm{g}}}}\left\lgroup{\frac{\mathrm{L}}{\mathrm{D}}}\right\rgroup$                          (E.4.1.11)

or with $\rm f ≡ 8τ_w | ( ρv^2 )$ we have again:

$\mathrm{h}_{\mathrm{f}}=\mathrm{f}~{\frac{\mathrm{v}^{2}}{2g}}\left\lgroup{\frac{\mathrm{L}}{\mathrm{D}}}\right\rgroup$                                  (E.4.1.12)

Graph:

• On a log-log graph, we have the analytical and measured f($\rm Re_D$ ) function:

Commen:t
• Clearly, the $\rm h_f$ -correlation holds for both laminar and turbulent pipe flows, where

$\mathrm{f}_{\mathrm{laminar}}=64\,/{\sqrt{\mathrm{Re_{D}}}}\quad\mathrm{~and~}\quad\mathrm{f}_{\mathrm{turbulent}}=\mathrm{f}\left\lgroup\,\mathrm{Re_{D}}\,,\,{\frac{{\varepsilon }}{\mathrm{D}}}\right\rgroup$

Turbulent friction factor values are obtainable, for example, via Eq. (4.5e), or from the Moody chart (see App. B)

$\rm f^{-1/2}\approx-1.8\ {log}\bigg[{\frac{6.9}{{Re_{D}}}}+\left\lgroup{\frac{\varepsilon /{D}}{3.7}}\right\rgroup ^{1.11}\bigg]$                         (4.5e)

Question: 4.2

## Turbulent Friction Factor Derivation for Flow in Smooth Pipes ...

• A force balance (see Sect. 2.4, Momentum RTT) on...
Question: 4.3

## Given hf (or Δp) for Turbulent Pipe Flow, as well as D and L, Find the Volumetric Flow Rate Q When D = 0.3 m, L = 100 m, ε/D = 2 × 10^-4, hf = 8m, and νoil = 2 × 10^-5 m²/s. ...

• Recall, $\rm Q=v(\pi r_0^2)$, where...
Question: 4.4

## Two-pipe Flow with Pump as well as Frictional and Form Losses Given two water reservoirs (HA = 5m and HB =15m) connected by two parallel wrought-ir5m and Hon pipes (D1 = 0.05m, ε1 = 0.04mm; L1 ≈ 15m, and D2 = 0.10m, ε2 = 0.06mm; L2 ≈ 15m with pump (10 kW; η = 0.8) to convey the water (20ºC; ρ = 988 ...

With $\rm v_A$ = \rm v_B[/late...
Question: 4.5

## Single-Tube Heat Exchanger Consider a smooth curved pipe of unknown length (D = 12.5 mm) immersed in a boiling-water reservoir (TR = 373K, pR = patm), where the tube water (m = 0.0576 kg/s, Tin = 300K) should be heated to Tout = 360K . Determine the required tube length and total heat transfer ...

• The total heat flow rate (Eq. (4.28)) is: [latex...
Question: 4.6

## Basic Shell-and-Tube Heat Exchanger Consider cooling of hot oil (moil = 5.5 kg / s; Tm = 380K, Tout = 320K; cp = 2.122kJ /(kg ⋅ K))  by water (Tin = 280K, mwater = 5.65kg / s; cp = 4.18kJ /(kg ⋅ K)) ...

\begin{array}{l}\rm{{\Delta\dot{ Q}_{{oil}}...
Question: 4.9

## Sample Squeeze-Film System Consider squeeze-film lubrication under a constant load L for different fluids, i.e., Newtonian, power-law, and viscoelastic. ...

Based on the postulates $\vec{\rm v}$...
Question: 4.10

## Simple Slider Bearing with a Given Volumetric Flow Rate ...

Again, the basic problem solution is a combination...
Question: 4.11

## Long, Eccentric Journal Bearing Consider a rotating shaft of radius R1 inside a stationary housing of inner radius R2 and both of length L. The difference R2 − R1 ≡ c is the clearance and the ratio e/c ≡ ε is the eccentricity, where e is the off-center distance (see Sketch). Clearly, it is the ...

Nondimensionalizations \rm\theta=\frac{{ x}...
Question: 4.12