Chapter 1
Q. 1.P.49
Determine the Thevenin’s and Norton’s equivalents across a and b in the given circuit.

Step-by-Step
Verified Solution
Let V_1=V_{\text {Th }} . Now by KVL in first (only) loop,
V+100-V_1=0
Applying Nodal analysis, we get
\begin{array}{r} -0.01 V_1+\frac{V}{20 \times 10^3}+0=0 \\ -200 V_1+V=0 \\ -200 V_1+V_1-100=0 \\ V_1=\frac{-100}{199}=-502.5 mV =V_{ Th } \end{array}
On short circuiting, we have V_1=0
By KVL,
So, I_{ sc }=5 mA . \text { Now }
R_{ Th }=\frac{\left|V_{ Th }\right|}{I_{ sc }}=100.5 \Omega
and the equivalent circuit is

