Chapter 12

Q. 12.12

Determining Reaction Order Graphically

At elevated temperatures, nitrogen dioxide decomposes to nitric oxide and molecular oxygen:

2 NO_2(g) → 2 NO(g) + O_2(g)

Concentration–time data for the consumption of NO_2 at 300 °C are as follows: (table below)

(a) Is the reaction first order or second order?

(b) What is the value of the rate constant?

(c) What is the concentration of NO_2 at t = 20.0 min?

(d) What is the half-life of the reaction when the initial concentration of NO_2 is 6.00 × 10^{-3} M?

(e) What is t_{1/2} when [ NO_2]_0 is 3.00 × 10^{-3} M?

STRATEGY

determine whether the reaction is first order or second order, calculate values of ln [ NO_2 ] and 1/[ NO_2 ] and then graph these values versus time. The rate constant can be obtained from the slope of the straight-line plot, and concentrations and half-lives can be calculated from the appropriate equation in Table 12.4.

Time (s) [ NO_2 ] Time (s) [ NO_2 ]
0 8.00 \times 10^{-3} 200 4.29 \times 10^{-3}
50 6.58 \times 10^{-3} 300 3.48 \times 10^{-3}
100 5.59 \times 10^{-3} 400 2.93 \times 10^{-3}
150 4.85 \times 10^{-3} 500 2.53 \times 10^{-3}

 

TABLE 12.4 Characteristics of First- and Second-Order Reactions of the Type A S Products
First-Order Second-Orde
Rate law -\frac{\Delta[A]}{\Delta t}=k[A] -\frac{\Delta[A]}{\Delta t}=k[A]^2
Concentration–time equation \ln [A]=-kt + \ln [A]_0 \frac{1}{ [A]_t}=-kt + \frac{1}{ [A]_0}
Linear graph \ln [A] \text{versus t}

\frac{1}{ [A]} \text{versus t}

Graphical determination of k k= -(Slope) k=Slope
Half-life t_{1/2}=\frac{0.693}{k[A]_0}

(constant)

t_{1/2}=\frac{1}{k}

(not constant)

Step-by-Step

Verified Solution

(a) The plot of ln [ NO_2 ] versus time is curved, but the plot of 1/[ NO_2 ] versus time is a straight line. The reaction is therefore second order in NO_2.

(b) The rate constant equals the slope of the straight line in the plot of 1/[ NO_2 ] versus time, which we can estimate from the coordinates of two widely separated points on the line:

k=\text { Slope }=\frac{\Delta y}{\Delta x}=\frac{340   \mathrm{M}^{-1}-150  \mathrm{M}^{-1}}{400 \mathrm{~s}-50 \mathrm{~s}}=\frac{190  \mathrm{M}^{-1}}{350 \mathrm{~s}}=0.54 /(\mathrm{M} \cdot \mathrm{s})

(c) The concentration of NO_2 at t = 20.0 min (1.20 × 10³ s) can be calculated using the integrated rate law:

\frac{1}{\left[\mathrm{NO}_2\right]_t}=k t+\frac{1}{\left[\mathrm{NO}_2\right]_0}

Substituting the values of k, t, and [ NO_2]_0 gives

\begin{aligned}\frac{1}{\left[\mathrm{NO}_2\right]_t} & =\left(\frac{0.54}{\mathrm{M} \cdot \mathrm{s}}\right)\left(1.20 \times 10^3 \mathrm{~s}\right)+\frac{1}{8.00 \times 10^{-3}  \mathrm{M}} \\& =\frac{648}{\mathrm{M}}+\frac{125}{\mathrm{M}}=\frac{773}{\mathrm{M}} \\{\left[\mathrm{NO}_2\right]_t } & =1.3 \times 10^{-3} \mathrm{M}\end{aligned}

(d) The half-life of this second-order reaction when the initial concentration of NO_2 is 6.00 × 10^{-3} M can be calculated from the rate constant and the initial concentration:

t_{1 / 2}=\frac{1}{k\left[\mathrm{NO}_2\right]_0}=\frac{1}{\left(\frac{0.54}{\mathrm{M} \cdot \mathrm{s}}\right)\left(6.00 \times 10^{-3} \mathrm{M}\right)}=3.1 \times 10^2 \mathrm{~s}

(e) When [ NO_2]_0 is 3.00 × 10^{-3} M, t_{1/2} = 6.2 × 10² s (twice as long as when [ NO_2]_0 is 6.00 × 10^{-3} M because [ NO_2]_0 is now smaller by a factor of 2).

Time (s) [ NO_2 ] ln [ NO_2 ] 1/[ NO_2 ]
0 8.00 \times 10^{-3} -4.828 125
50 6.58 \times 10^{-3} -5.024 152
100 5.59 \times 10^{-3} -5.187 179
150 4.85 \times 10^{-3} -5.329 206
200 4.29 \times 10^{-3} -5.451 233
300 3.48 \times 10^{-3} -5.661 287
400 2.93 \times 10^{-3} -5.833 341
500 2.53 \times 10^{-3} -5.98 395
fig12.12