Evaluate

(a) \int_1^2 x^2+1 d x (b) \int_2^1 x^2+1 d x (c) \int_0^\pi \sin x d x

Step-by-Step

Learn more on how do we answer questions.

(a) Let I stand for \int_1^2 x^2+1 d x.

I=\int_1^2 x^2+1 \mathrm{~d} x=\left[\frac{x^3}{3}+x\right]_1^2

The integral is now evaluated at the upper and lower limits. The difference gives the value required.

I=\left(\frac{2^3}{3}+2\right)-\left(\frac{1^3}{3}+1\right)=\frac{8}{3}+2-\frac{4}{3}=\frac{10}{3}

(b) Because interchanging the limits of integration changes the sign of the integral, we find

\int_2^1 x^2+1 \mathrm{~d} x=-\int_1^2 x^2+1 \mathrm{~d} x=-\frac{10}{3}

(c) \int_0^\pi \sin x d x=[-\cos x]_0^\pi=(-\cos \pi)-(-\cos 0)=1-(-1)=2

Figure 13.10 illustrates this area.

Question: 13.11

Figure 13.13 illustrates the required area. From t...

Question: 13.10

(a) A graph of y = sin x between x = −π and x = π ...

Question: 13.9

Figure 13.11 illustrates the required area.
[latex...

Question: 13.8

\begin{aligned}\text { Area } & =\int_1...

Question: 13.6

(a) Using the identities in Table 3.1 we find
[lat...

Question: 13.5

Powers of trigonometric functions, for example [l...

Question: 13.4

(a) \int x^2+9 \mathrm{~d} x=\int x^2 \math...

Question: 13.3

(a) From Table 13.1, we find \int x^n \mat...

Question: 13.2

From Table 10.1 we find
\frac{\mathrm{d}}{\...

Question: 13.1

We need to find a function which, when differentia...