Evaluate

(a)  \int \cos ^2 t \mathrm{~d} t

(b)  \int \sin ^2 t \mathrm{~d} t

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Powers of trigonometric functions, for example  \sin ^2 t,  do not appear in the table of standard integrals. What we must attempt to do is rewrite the integrand to obtain a standard form.

(a) From Table 3.1

\cos ^2 t=\frac{1+\cos 2 t}{2}

and so

\begin{aligned}\int \cos ^2 t \mathrm{~d} t & =\int \frac{1+\cos 2 t}{2} \mathrm{~d} t \\& =\int \frac{1}{2} \mathrm{~d} t+\int \frac{\cos 2 t}{2} \mathrm{~d} t \\& =\frac{t}{2}+\frac{\sin 2 t}{4}+c\end{aligned}

(b)

\begin{array}{rlrl}\int \sin ^2 t \mathrm{~d} t & =\int 1-\cos ^2 t \mathrm{~d} t & & \text { using the trigonometric identities } \\& =\int 1 \mathrm{~d} t-\int \cos ^2 t \mathrm{~d} t & & \text { using linearity } \\& =t-\left(\frac{t}{2}+\frac{\sin 2 t}{4}+c\right) & & \text { using part (a) } \\& =\frac{t}{2}-\frac{\sin 2 t}{4}+k &\end{array}
Table 3.1
Common trigonometric identities.
\begin{aligned}& \tan A=\frac{\sin A}{\cos A} \\& \sin (A \pm B)=\sin A \cos B \pm \sin B \cos A \\& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\& 2 \sin A \sin B=\cos (A-B)-\cos (A+B) \\& \sin ^2 A+\cos ^2 A=1 \\& 1+\cot ^2 A=\operatorname{cosec^ 2} A \\& \tan ^2 A+1=\sec ^2 A \\& \cos 2 A=1-2 \sin ^2 A=2 \cos ^2 A-1=\cos ^2 A-\sin ^2 A \\& \sin 2 A=2 \sin  A \cos  A \\& \sin ^2 A=\frac{1-\cos 2 A}{2} \\& \cos ^2 A=\frac{1+\cos 2 A}{2}\end{aligned}
Note: \sin ^2 A  is the notation used for (\sin A)^2.  Similarly  \cos ^2 A  means (\cos A)^2.

Related Answered Questions

Question: 13.11

Verified Answer:

Figure 13.13 illustrates the required area. From t...
Question: 13.9

Verified Answer:

Figure 13.11 illustrates the required area. [latex...
Question: 13.8

Verified Answer:

\begin{aligned}\text { Area } & =\int_1...
Question: 13.7

Verified Answer:

(a) Let I stand for  \int_1^2 x^2+1 d x[/la...
Question: 13.6

Verified Answer:

(a) Using the identities in Table 3.1 we find [lat...
Question: 13.2

Verified Answer:

From Table 10.1 we find \frac{\mathrm{d}}{\...
Question: 13.1

Verified Answer:

We need to find a function which, when differentia...