Find a functional description of the following data:
4 | 3 | 2 | 1 | x |
78 | 46 | 19.5 | 5.1 | y |
These data do not lie close to a straight line when plotted on linear or semilog axes. However, they do when plotted on log-log axes. Thus a power function y = bx^m can describe the data. Using the transformations X = log x and Y = log y, we obtain the new data table:
From this table we obtain
\sum\limits_{i=1}^4 X_i=1.3803 \quad \sum\limits_{i=1}^4 Y_i=5.5525
\sum\limits_{i=1}^4 X_i Y_i=2.3208 \quad \sum\limits_{i=1}^4 X_i^2=0.6807
Using X, Y , and B = log b instead of x, y, and b in (C.1.1) and (C.1.2) we obtain
m \sum\limits_{i=1}^n x_i^2+b \sum\limits_{i=1}^n x_i=\sum\limits_{i=1}^n y_i x_i (C.1.1)
m \sum\limits_{i=1}^n x_i+b n=\sum\limits_{i=1}^n y_i (C.1.2)
0.6807m + 1.3803B = 2.3208
1.3803m + 4B = 5.5525
The solution is m = 1.9802 and B = 0.7048. This gives b = 10^B = 5.068. Thus, the desired function is y = 5.068x^{1.9802}.
0.6021 | 0.4771 | 0.3010 | 0 | X = log x |
1.8921 | 1.6628 | 1.2900 | 0.7076 | Y = log y |