Fit the power function y = bx^m to the data y_i . The value of m is known.
The least-squares criterion is
J=\sum\limits_{i=1}^n\left(b x^m-y_i\right)^2To obtain the value of b that minimizes J , we must solve ∂ J/∂b = 0.
\frac{\partial J}{\partial b}=2 \sum\limits_{i=1}^n x_i^m\left(b x_i^m-y_i\right)=0This gives
b=\frac{\sum_{i=1}^n x_i^m y_i}{\sum_{i=1}^n x_i^{2 m}} (1)