For the Miller’s sweep shown in Fig. 12.12(a),\ V_{CC} = 25 V,\ R_{C2} = 5 kΩ,\ R_{C1} = 10 kΩ. The duration of the sweep is 5 ms. The sweep amplitude is 25 V. Calculate (a) the value of *C*; (b) the retrace time and (c) the slope error. The transistor has the following parameters:\ h_{fe} = 80,\ h_{ie} = 1kΩ,\ h_{oe} = 1/40 kΩ and\ h_{re} = 2.5 × 10^{−4}.

Step-by-Step

Learn more on how do we answer questions.

(a)

\ V_{s} = \frac{V_{CC}}{R_{C1}C_{s}} × T_{s}

We have\ V_{s} = V_{CC}

Therefore,

\ T_{s} = R_{C1}C_{s} \ C_{s} = \frac{T_{s}}{R_{C1}}= \frac{5 × 10^{−3}}{10 × 10^{3}} = 0.5*μ*F

(b) Retrace time\ T_{r} = R_{C2} × C_{s} = 5 × 10^{3} × 0.5 × 10^{−6} = 2.5 ms

(c)

\ A_{I} = \frac{−h_{fe}}{1+ hoeR_{C2}} = \frac{−80}{1 + \frac{5}{40}}= −71.11

\ R_{i} = h_{ie} + h_{re}A_{I}R_{C2} = 1 + (2.5 × 10^{−4})(−71.11)(5) = (1 − 0.0889) = 0.91 kΩ

\ A = A_{I}\frac{R_{C2}}{R_{i}}= −71.11 × \frac{5}{0.91} = −390.71

\ e_{s(Miller)} = \frac{V_{s}}{V_{CC}} × \frac{1}{|A|} × \left(1 + \frac{R_{C1}}{R_{i}}\right)= \frac{25}{25} × \frac{1}{390.71} × \left(1 + \frac{10}{0.91}\right)= 0.0307 = 3.07 %.

Question: 12.1

The given UJT has the following parameters:
[latex...

Question: 12.2

\ V_{EE} = V_{Z1} + V_{Z2} = 6.8 + ...

Question: 12.4

Referring to the circuit in Fig. 12.16(a):
(a) S...

Question: 12.5

Refer to the bootstrap circuit shown in Fig. 12.16...

Question: 12.6

The waveform of the sweep generator is shown in Fi...

Question: 12.7

Given,
\ f = 10 kHz,\ V_{s}[...

Question: 12.8

Given\ R_{BB} = 3 kΩ,\ η[/la...

Question: 12.9

(a) Current through\ R_{1} is:
[lat...

Question: 12.10

To calculate\ R_{1}:
Applying KVL t...