For the series-connected identical JFETs of Fig. 4-23, I_{DSS} = 8 \text{mA} and V_{p0} = 4 \text{V}. If V_{DD} = 15 \text{V}, R_D = 5 kΩ, R_S = 2 kΩ, and R_G = 1 MΩ, find (a) V_{DSQ1}, (b) I_{DQ1}, (c) V_{GSQ1}, (d) V_{GSQ2}, and (e) V_{DSQ2}.
(a) By KVL,
V_{GSQ1} = V_{GSQ2} + V_{DSQ1} (1)
But, since I_{DQ1} ≡ I_{DQ2}, (4.2) leads to
i_D = I_{DSS} \left( 1 + \frac{v_{GS}}{V_{p0}} \right)^2 (4.2)
I_{DSS} \left(1 + \frac{V_{GSQ1}}{V_{p0}} \right)^2 = I_{DSS} \left(1 + \frac{V_{GSQ2}}{V_{p0}} \right)^2
or, V_{GSQ1} = V_{GSQ2} (2)
Substitution of (2) into (1) yields V_{DSQ1} = 0.
(b) With negligible gate current, KVL applied around the lower gate-source loop requires that V_{GSQ1} = -I_{DQ1}R_S. Substituting into (4.2) and rearranging now give a quadratic in I_{DQ1}:
I^2_{DQ1} – \left(\frac{V_{p0}}{R_S}\right)^2 \left(\frac{1}{I_{DSS}} + \frac{2R_S}{V_{p0}} \right) I_{DQ1} + \left(\frac{V_{p0}}{R_S}\right)^2 = 0 (3)
Substitution of known values gives
I^2_{DQ1} – 4.5 × 10^{-3}I_{DQ1} + 4 × 10^{-6} = 0
from which we obtain I_{DQ1} = 3.28 \text{mA} and 1.22 \text{mA}. The value I_{DQ1} = 3.28 \text{mA} would result in V_{GSQ1} < -V_{p0}, so that value is extraneous. Hence, I_{DQ1} = 1.22 \text{mA}.
(c) V_{GSQ1} = -I_{DQ1}R_S = -(1.22 × 10^{-3})(2 × 10^{3}) = -2.44 \text{V}
(d) From (1) with V_{DSQ1} = 0, we have V_{GSQ2} = V_{GSQ1} = -2.44 \text{V}.
(e) By KVL,
V _{DSQ2} = V_{DD} – V_{DSQ1} – I_{DQ1}(R_S + R_D) = 15 – 0 – (1.22 × 10^{-3})(2 × 10^{3} + 5 × 10^{3}) = 6.46 \text{V}