Holooly Plus Logo

Question 14.5: Helical Compression Spring: Design for Cyclic Loading A heli......

Helical Compression Spring: Design for Cyclic Loading

A helical compression spring for a cam follower is subjected to the load that varies between P_{min} and P_{max} . Apply the Goodman criterion to determine:

a. The wire diameter.

b. The free height.

c. The surge frequency.

d. Whether the spring will buckle in service.

Given: P_{min} =300 N, P_{max} =600 N.

Design Decisions: We use a chrome-vanadium ASTM A232 wire of G =79 GPa; r_c =20%, N_a =10, and C [/;latex]=7. Both ends of the spring are squared and ground. A safety factor of 1.3 is used due to uncertainty about the load.

The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The mean and alternating loads are

P_m=\frac{1}{2}(600+300)=450  N , \quad P_a=\frac{1}{2}(600-300)=150  N

Equations (14.7) and (14.9) give

K_s=1+\frac{0.61 .5}{C}      (14.7)

K_w=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}         (14.9)

K_s=1+\frac{0.615}{7}=1.088, \quad K_w=\frac{28-1}{28-4}+\frac{0.615}{7}=1.213

So we have, using Equations (14.21) and (14.22), \tau_a / \tau_m=K_w P_a / K_s P_m=0.372 .

\tau_m=K_s \frac{8 P_m C}{\pi d^2}       (14.21)

\tau_a=K_w \frac{8 P_a C}{\pi d^2}       (14.22)

a. Tentatively select a 6 mm wire diameter. Then from Equation (14.12) and Table 14.2, we have

S_{u s}=A d^b      (14.12)

S_u=A d^b=1790\left(6^{-0.155}\right)=1356  MPa

By Equation (7.5) and Table 14.3, S_{u s}=0.67(1356)=908.5  MPa \text { and } S_{e s}^{\prime}=0.2(1356)=271  MPa . Substitution of the numerical values into Equation (14.24) results in

   \begin{aligned} \text {Also Steels} \quad & S_{u s}=0.67 S_u   \quad (7.5a)\\ & S_{y s}=0.577 S_y   \quad (7.5b)\end{aligned}

\tau_a=\frac{S_{u s} / n}{\frac{\left(\tau_a / \tau_m\right)\left(2 S_{u s}-S_{e s}^{\prime}\right)}{S_{e s}^{\prime}}+1}        (14.24)

\tau_m=\frac{908.5 / 1.3}{\frac{(0.372)(2 \times 908.5-271)}{271}+1}=224  MPa

Applying Equation (14.26),

d^3=K_s \frac{8 P_m D}{\pi \tau_m} \quad \text { or } \quad d^2=K_s \frac{8 P_m C}{\pi \tau_m}       (14.26)

d^2=K_s \frac{8 P_m C}{\pi \tau_m}=1.088 \frac{8(450)(7)}{\pi\left(224 \times 10^6\right)}, \quad d=6.24\left(10^{-3}\right)  m

Hence, D =7(6.24)=43.68 mm. Inasmuch as S_u=1790\left(6.24^{-0155}\right)=1348<1356 MPa , d=6.24  mm is satisfactory

b. From Figure 14.7(d), h_s=\left(N_a+2\right) d=74.88 mm . Using Equation (14.11),

k=\frac{P}{\delta}=\frac{G d^4}{8 D^3 N_s}=\frac{d G}{8 C^3 N_a}         (14.11)

k=\frac{d G}{8 C^3 N_a}=\frac{(6.24)(79,000)}{8(7)^3(10)}=17.97  N / mm

With a 20% clash allowance,

\delta_s=1.2 \frac{P_{\max }}{k}=1.2(33.39)=40.07  mm


h_f=74.88+40.07=115  mm

c. Through the use of Equation (14.29),

f_n=\frac{356,620 d}{D^2 N_a} Hz      (14.29)

\begin{aligned} f_n & =\frac{356,620 d}{D^2 N_a}=\frac{356,620(6.24)}{(43.68)^2(10)} \\ & =116.6 cps =6996  cpm \end{aligned}

Comment: If this corresponds to operating speeds (for equipment mounted on this spring), it may be necessary to redesign the spring.

d. Check for the buckling for extreme case of deflection \left(\delta=\delta_s\right):

\frac{\delta_s}{h_f}=\frac{40.07}{115}=0.35, \quad \frac{h_f}{D}=\frac{115}{43.68}=2.63

Since (2.63, 0.35) is inside of the stable region of curve A in Figure 14.10, the spring will not buckle.

TABLE 14.2
Coefficients and Exponents for Equation (14.12)
Material ASTM No. b MPa ksi
Hard-drawn wire A227 −0.201 1510 237
Music wire A228 −0.163 2060 186
Oil-tempered wire A229 −0 193 1610 146
Chrome-vanadium wire A232 −0.155 1790 173
Chrome-silicon wire A401 −0 091 1960 218
Source: Associated Spring-Barnes Group, Design Handbook, Associated Spring-Barnes Group, Bristol, CN, 1987.


TABLE 14.3
Approximate Strength Ratios of Some
Common Spring Materials
Material S_{y s} / S_u S_{e s}^{\prime} / S_u
Hard-drawn wire 0.42 0.21
Music wire 0.40 0.23
Oil-tempered wire 0.45 0.22
Chrome-vanadium wire 0.52 0.20
Chrome-silicon wire 0.52 0.20
Source: Associated Spring-Barnes Group, Design Handbook, Associated Spring-Barnes Group, Bristol, CN, 1987.
Notes: S_{y s} , yield strength in shear; S_u, ultimate strength in tension; S_{e s}^{\prime} , endurance limit (or strength) in shear.

Related Answered Questions