If an artificial atmosphere consists of 20% oxygen and 80% nitrogen by-volume, at 14.7 psia and 60°F, what are (a) the specific weight and partial pressure of the oxygen and (b) the specific weight of the mixture?
Table A.5:
R \text { (oxygen })=1554 \mathrm{ft}^{2} /\left(\sec ^{2} \cdot{ }^{\circ} \mathrm{R}\right),
\begin{aligned}& R \text { (nitrogen) }=1773 \mathrm{ft}^{2} /\left(\sec ^{2} \cdot{ }^{\circ} \mathrm{R}\right)\end{aligned}
Eq. (2.5): 100 \% \mathrm{O}_{2}: \quad \dot{\gamma}=\frac{32.2(14.7 \times 144)}{1554(460+60)}=0.0843 \mathrm{lb} / \mathrm{ft}^{3}
Eq. (2.5): 100 \% \mathrm{~N}_{2}: \quad \gamma=\frac{32.2(14.7 \times 144)}{1773(520)}=0.0739 \mathrm{lb} / \mathrm{ft}^{3}
(a) Each \mathrm{ft}^{3} of mixture contains 0.2 \mathrm{ft}^{3} of \mathrm{O}_{2} and 0.8 \mathrm{ft}^{3} of \mathrm{N}_{2}.
So for 20 % \mathrm{O}_{2}, \quad \gamma=0.20(0.0843)=0.01687 \mathrm{lb} / \mathrm{ft}^{3} \quad
From Eq. (2.5), for 20 % \mathrm{O}_{2}, \quad p=\frac{\gamma R T}{g}=\frac{0.01687(1554) 520}{32.2}
=423 \mathrm{lb} / \mathrm{ft}^{2} \mathrm{abs}=2: 94 \mathrm{psia}
Note that this = 20%(14.7 psia).
(b) For 80 \% \mathrm{~N}_{2}, \quad \gamma=0.80(0.0739)=0.0591 \mathrm{lb} / \mathrm{ft}^{3}.
\text { Mixture: } \gamma=0.01687+0.0591=0.0760 \mathrm{lb} / \mathrm{ft}^{3} \quad
\gamma=\frac{g p}{R T} (2.5)
TABLE A.5 Physical properties of common gases at standard sea-level atmospheric pressure { }^a . | ||||||||
Gas | Chemical formula | Molar mass , \mathbf{ M} | Density \rho , | Absolute viscosity, {}^ b | Gas constant, \boldsymbol{R} | Specific heat, c_p \quad c_v | Specific heat ratio, k=c_p / c_v | |
\textbf { at } 68^{\circ} \mathbf{F} | – | slug/ slug-mol | \textbf { slug/ft }{ }^3 | 10^{-6} \mathbf{lb} \cdot \mathbf{sec}^2 \mathbf{ft}^2 | \begin{aligned}& \mathbf{f t} \cdot \mathbf{l b} /\left(\text { slug } \cdot{ }^{\circ} \mathbf{R}\right) \\& =\mathbf{f t}^2 /\left(\sec ^2 \cdot{ }^{\circ} \mathbf{R}\right)\end{aligned} | \begin{aligned}& \mathbf{f t} \cdot \mathbf{l b} /\left(\text { slug } \cdot{ }^{\circ} \mathbf{R}\right) \\& =\mathbf{f t}^2 /\left(\sec ^2 \cdot{ }^{\circ} \mathbf{R}\right)\end{aligned} | – | |
Air carbon | 28.96 | 0.00231 | 0.376 | 1,715 | 6,000 | 4,285 | 1.40 | |
dioxide carbon | CO_2 | 44.01 | 0.00354 | 0.310 | 1,123 | 5,132 | 4,009 | 1.28 |
quad monoxide | CO | 28.01 | 0.00226 | 0.380 | 1,778 | 6,218 | 4,440 | 1.40 |
Helium | He | 4.003 | 0.000323 | 0.411 | 12,420 | 31,230 | 18,810 | 1.66 |
Hydrogen | H_2 | 2.016 | 0.000162 | 0.189 | 24,680 | 86,390 | 61,710 | 1.40 |
Methane | CH_4 | 16.04 | 0.00129 | 0.280 | 3,100 | 13,400 | 10,300 | 1.30 |
Nitrogen | N_2 | 28.02 | 0.00226 | 0.368 | 1,773 | 6,210 | 4,437 | 1.40 |
Oxygen | O_2 | 32.00 | 0.00258 | 0.418 | 1,554 | 5,437 | 3,883 | 1.40 |
Water vapor | H_2O | 18.02 | 0.00145 | 0.212 | 2,760 | 11,110 | 8,350 | 1.33 |
\textbf { at } 20^{\circ} \mathbf{C} | – | kg / kg-mol | \mathbf{kg} / \mathbf{m}^3 | 10^{-6} \mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2 | \begin{aligned}& \mathbf{N} \cdot \mathbf{m} /(\mathbf{kg} \cdot \mathbf{K}) \\& =\mathbf{m}^2 /\left(\mathbf{s}^2 \cdot \mathbf{K}\right)\end{aligned} | \begin{aligned} & \mathbf{N} \cdot \mathbf{m} /(\mathbf{k g} \cdot \mathbf{K}) \\ & =\mathbf{m}^2 /\left(\mathbf{s}^2 \cdot \mathbf{K}\right) \end{aligned} | – | |
Air carbon | 28.96 | 1.205 | 18.0 | 287 | 1003 | 716 | 1.40 | |
dioxide carbon | CO_2 | 44.01 | 1.84 | 14.8 | 188 | 858 | 670 | 1.28 |
quad monoxide | CO | 28.01 | 1.16 | 18.2 | 297 | 1040 | 743 | 1.40 |
Helium | He | 4.003 | 0.166 | 19.7 | 2077 | 5220 | 3143 | 1.66 |
Hydrogen | H_2 | 2.016 | 0.0839 | 9.0 | 4120 | 14450 | 10330 | 1.40 |
Methane | CH_4 | 16.04 | 0.668 | 13.4 | 520 | 2250 | 1730 | 1.30 |
Nitrogen | N_2 | 28.02 | 1.16 | 17.6 | 297 | 1040 | 743 | 1.40 |
Oxygen | O_2 | 32.00 | 1.33 | 20.0 | 260 | 909 | 649 | 1.40 |
Water vapor | H_2O | 18.02 | 0.747 | 10.1 | 462 | 1862 | 1400 | 1.33 |