Chapter 8

Q. 8.1

Laplace transform of a noncausal exponential signal

Find the Laplace transform of x(t) = e^{−t} u(t) + e^{2t} u(−t).

Step-by-Step

Verified Solution

The Laplace transform of this sum is the sum of the Laplace transforms of the individual terms e^{−t} u(t) and e^{2t} u(−t). The ROC of the sum is the region in the s plane that is common to the two ROCs. From Table 8.1

e^{-t} \mathrm{u}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+1}, \quad \sigma>-1

and

e^{2t} u(-t)\xleftrightarrow{\mathcal{L}}-\frac{1}{s-2}, σ<2.

In this case, the region in the s plane that is common to both ROCs is −1 < σ < 2 and

e^{−t} u(t) + e^{2t} u(-t)\xleftrightarrow{\mathcal{L}}\frac{1}{s+1}-\frac{1}{s-2}, −1 < σ < 2

(Figure 8.12). This Laplace transform has poles at s = −1 and s = +2 and two zeros at infinity.

Table 8.1 Some common Laplace-transform pairs
δ (t) \overset{\mathcal{L}}{\longleftrightarrow } 1 ,    \text{All}  σ
u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s ,  σ > 0 – u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s^2 ,  σ < 0
\text{ramp}(t) = t  u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s^2 ,  σ > 0 \text{ramp}(-t) = -t u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s^2 ,  σ < 0
e^{-αt}  u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α),  σ > -α -e^{-αt}  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α),  σ < -α
t^n  u (t) \overset{\mathcal{L}}{\longleftrightarrow }n!/s^{n+1},  σ > 0 -t^n  u (-t) \overset{\mathcal{L}}{\longleftrightarrow }n!/s^{n+1},  σ < 0
te^{-αt}  u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α)^2,  σ > -α -te^{-αt}  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α)^2,  σ < -α
t^n e^{-αt}  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{n!}{(s+ α)^{n+1}},  σ > -α -t^n e^{-αt}  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{n!}{(s+ α)^{n+1}},  σ < -α
\sin (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{s^2+ω_0^2},  σ > 0 -\sin (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{s^2+ω_0^2},  σ < 0
\cos (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s}{s^2+ω_0^2},  σ > 0 -\cos (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s}{s^2+ω_0^2},  σ < 0
e^{-αt} \sin (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{(s+α)^2+ω_0^2},  σ > -α -e^{-αt} \sin (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{(s+α)^2+ω_0^2},  σ < -α
e^{-αt} \cos (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s+α}{(s+α)^2+ω_0^2},  σ > -α -e^{-αt} \cos (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s+α}{(s+α)^2+ω_0^2},  σ < -α
e^{-α|t|} \overset{\mathcal{L}}{\longleftrightarrow } \frac{1}{s+α}  –  \frac{1}{s-α}= –  \frac{2 α}{s^2-α^2},  -α < σ < α
التقاط