Use Table 13.1 to integrate the following functions:
(a) x^4
(b) \cos k x, where k is a constant
(c) \sin (3 x+2)
(d) 5.9
(e) \tan (6 t-4)
(f) \mathrm{e}^{-3 z}
(g) \frac{1}{x^2}
(h) \cos 100 n \pi t, where n is a constant
(a) From Table 13.1, we find \int x^n \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c, n \neq-1 \text {. } To find \int x^4 \mathrm{~d} x \text { let } n=4 we obtain
\int x^4 d x=\frac{x^5}{5}+c
(b) From Table 13.1, we find \int \cos (a x) \mathrm{d} x=\frac{\sin (a x)}{a}+c. In this case a = k and so
\int \cos k x d x=\frac{\sin k x}{k}+c
Note that a, b, n and c are constants. When integrating trigonometric functions, angles must be in radians.
(c) From Table 13.1, we find \int \sin (a x+b) \mathrm{d} x=\frac{-\cos (a x+b)}{a}+c. In this case a = 3 and b = 2, and so
\int \sin (3 x+2) d x=\frac{-\cos (3 x+2)}{3}+c
(d) From Table 13.1, we find that if k is a constant then \int k \mathrm{~d} x=k x+c . Hence,
\int 5.9 d x=5.9 x+c
(e) In this example, the independent variable is t but nevertheless from Table 13.1 we can deduce
\int \tan (a t+b) \mathrm{d} t=\frac{\ln |\sec (a t+b)|}{a}+c
Hence with a = 6 and b = −4, we obtain
\int \tan (6 t-4) \mathrm{d} t=\frac{\ln |\sec (6 t-4)|}{6}+c
(f) The independent variable is z but from Table 13.1 we can deduce \int \mathrm{e}^{a z} \mathrm{~d} z=\frac{\mathrm{e}^{a z}}{a}+c. Hence, taking a = −3 we obtain
\int \mathrm{e}^{-3 z} \mathrm{~d} z=\frac{\mathrm{e}^{-3 z}}{-3}+c=-\frac{\mathrm{e}^{-3 z}}{3}+c
(g) Since \frac{1}{x^2}=x^{-2}, we find
\int \frac{1}{x^2} \mathrm{~d} x=\int x^{-2} \mathrm{~d} x=\frac{x^{-1}}{-1}+c=-\frac{1}{x}+c
(h) When integrating \cos 100 n \pi t with respect to t, note that 100 n \pi is a constant. Hence, using part (b) we find
\int \cos 100 n \pi t \mathrm{~d} t=\frac{\sin 100 n \pi t}{100 n \pi}+c
Table 13.1 The integrals of some common functions. |
|||
f(x) | \int f(x) d x | f(x) | \int f(x) \mathrm{d} x |
k, constant | kx + c | \cos (a x+b) | \frac{\sin (a x+b)}{a}+c |
x^n | \frac{x^{n+1}}{n+1}+c \quad n \neq-1 | \tan x | \ln |\sec x|+c |
x^{-1}=\frac{1}{x} | \ln |x|+c | \tan a x | \frac{\ln |\sec a x|}{a}+c |
\mathrm{e}^x | \mathrm{e}^x+c | \tan (a x+b) | \frac{\ln |\sec (a x+b)|}{a}+c |
\mathrm{e}^{-x} | -\mathrm{e}^{-x}+c | \operatorname{cosec}(a x+b) | \frac{1}{a}\{\ln \mid \operatorname{cosec}(a x+b) |
\mathrm{e}^{a x} | \frac{\mathrm{e}^{a x}}{a}+c | -\cot (a x+b) \mid\}+c | |
\sin x | -\cos x+c | \sec (a x+b) | \frac{1}{a}\{\ln \mid \sec (a x+b) |
\sin a x | \frac{-\cos a x}{a}+c | +\tan (a x+b) \mid\}+c | |
\sin (a x+b) | \frac{-\cos (a x+b)}{a}+c | \cot (a x+b) | \frac{1}{a}\{\ln |\sin (a x+b)|\}+c |
\cos x | \sin x+c | \frac{1}{\sqrt{a^2-x^2}} | \sin ^{-1} \frac{x}{a}+c |
\cos a x | \frac{\sin a x}{a}+c | \frac{1}{a^2+x^2} | \frac{1}{a} \tan ^{-1} \frac{x}{a}+c |