Question 3.3: Use the convolution integral to find the response of the sin......

Use the convolution integral to find the response of the single-DOF system represented by Eq. (3.2), assuming that the damping is zero, when a step force of magnitude \overline{F} is applied at t = 0, if the initial displacement, z, and the initial velocity, \dot{z}, are both zero at t = 0.

\ddot{z} + 2\gamma \omega _{n}\dot{z} + \omega ^{2}_{n}z = F/m            (3.2)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Eq. (C) of Example 3.2, the unit impulse response of the system is

h(t)= \frac{1}{m \omega _{n}}\sin \omega _{n}t            (A)

The applied force, F(\tau), is

\begin{aligned}&\begin{array}{lll}F(\tau ) = 0 &&& \tau < 0 \\F(\tau ) = \overline{F} &&& 0 < \tau <\infty &&&&&& (B) \end{array} \end{aligned}

From Eq. (3.21) and Eq. (A) (bearing in mind that \sin \left(-\theta \right) = – \sin \theta   \mathrm{, and}   \cos \left(-\theta \right) = \cos \theta ):

z(t) = \int_{0}^{t}{F(\tau)} \cdot h(t-\tau ) \;d\tau = \frac{\overline{F} }{m\omega _{n}} \int_{0}^{t}{\sin \omega _{n}(t -\tau )} \;d\tau = \frac{\overline{F} }{m\omega _{n}}\int_{0}^{t}{\sin (-\omega _{n}\tau + \omega _{n}t)} \;d\tau = \frac{\overline{F} }{m\omega _{n}}\int_{0}^{t}{-\sin (\omega _{n}\tau – \omega _{n}t)} \;d\tau = \frac{\overline{F} }{m\omega _{n}^{2}} {{}_{0}^{t}}\left[\cos (\omega _{n}\tau – \omega _{n}t)\right]

 

\begin{aligned}&\begin{array}{lll} z(t) = \frac{\overline{F} }{m\omega _{n}^{2}} \left(1  –  \cos \omega _{n}t\ \right) = \frac{\overline{F} }{k} \left(1  –  \cos \omega _{n}t\ \right) \\ (\mathrm{since}   k = m\omega _{n}^{2}). \end{array}    (C) \end{aligned}

Related Answered Questions