Subscribe $4.99/month

Un-lock Verified Step-by-Step Experts Answers.

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Our Website is free to use.
To help us grow, you can support our team with a Small Tip.

All the data tables that you may search for.

Need Help? We got you covered.

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Products

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Need Help? We got you covered.

Chapter 13

Q. 13.3

A beam with the section shown in Figure 13.14(a) is subjected to bending. Calculate the maximum tensile and compressive stresses in the beam and determine the orientation of the neutral axis.

13.14

Step-by-Step

Verified Solution

From Figure 13.14(b), we can calculate the centroidal coordinates \left(\bar{y}_{ C }, \bar{z}_{ C }\right) of the section as:

\bar{y}_{ C }=\frac{(200)(25)(12.5)+(300-25)(25)(162.5)}{(200)(25)+(275)(25)}=99.34  mm

and          \bar{z}_{ C }=\frac{(200)(25)(100)+(275)(25)(12.5)}{(200)(25)+(275)(25)}=49.34  mm

Next, we calculate \bar{I}_{y y}, \bar{I}_{z z} \text { and } \bar{I}_{y z} for the given section:

\begin{aligned} \bar{I}_{y y}=& {\left[\frac{1}{12}(25)^3(275)+(25)(275)(49.34-12.5)^2\right] } \\ &+\left[\frac{1}{12}(25)(200)^3+(25)(200)^3(100-49.34)^2\right] \end{aligned}

or            \bar{I}_{y y}=39.19\left(10^6\right)  mm ^4

\begin{aligned} \bar{I}_{z z}=& {\left[\frac{1}{12}(25)(275)^3+(25)(275)(1632.5-99.34)^2\right] } \\ &+\left[\frac{1}{12}(200)(25)^3+(25)(200)(99.34-12.5)^2\right] \end{aligned}

or          \bar{I}_{z z}=108.72\left(10^6\right)  mm ^4

and              \begin{aligned} \bar{I}_{y z}=& {[0+(25)(275)(49.34-12.5)(99.34-162.5)] } \\ &+[0+(25)(200)(99.34-12.5)(49.34-100)] \end{aligned}

\bar{I}_{y z}=-37.99\left(10^6\right)  mm ^4

Now, bending moment on the section is

M_z=-40  kN m =-40 \times 10^3  kN m

and from the generalised flexure equation,

\sigma_{x x}=\left\lgroup \frac{z \bar{I}_{y z}-y \bar{I}_{y y}}{\bar{I}_{y y} \bar{I}_{z z}-\bar{I}_{y z}^2} \right\rgroup M_z

[refer Eq. (13.21) with \left.M_y=0\right]

\sigma_{x x}=\left\lgroup \frac{z \bar{I}_{z z}-y \bar{I}_{y z}}{\bar{I}_{y y} \bar{I}_{z z}-\bar{I}_{y z}^2} \right\rgroup M_y+\left\lgroup \frac{z \bar{I}_{y z}-y \bar{I}_{y y}}{\bar{I}_{y y} \bar{I}_{z z}-\bar{I}_{y z}^2} \right\rgroup M_z               (13.21)

Now for NA, \sigma_{x x}=0 , so

\frac{y}{z}=\tan \phi=\frac{\bar{I}_{y z}}{\bar{I}_{y y}}

where \phi is the angle made by neutral axis with z-axis. So,

\tan \phi=-\frac{37.99}{39.19} \Rightarrow \phi=135.9^{\circ}

The neutral axis is drawn in Figure 13.15:

From the above figure, we note points A, B and D are furthest from NA. Thus, noting (y, z) coordinates of A, B and D from the figure, we calculate the normal stresses developed as

\left.\sigma_{x x}\right|_{ A }=\frac{(-24.34)(-37.99)-(200.66)(39.19)}{(39.19)(108.72)-(37.99)^2} \times \frac{1}{10^6}(-40)\left(10^6\right)

= +98.52 MPa

\left.\sigma_{x x}\right|_{ D }=\frac{(150.66)(-37.99)-(-74.34)(39.19)}{(39.19)(108.72)-(37.99)^2} \times(-40)

= +39.9 MPa

and

\left.\sigma_{x x}\right|_{ B }=\frac{(-49.34)(-37.99)-(-99.34)(39.19)}{(39.19)(108.72)-(37.99)^2} \times(-40)

= −81.88 MPa

Thus, maximum tensile stress is \sigma_{ A } = 98.52 MPa and maximum compressive stress is \sigma_{ B } = 81.88 MPa.

13.15