Chapter 7
Q. 7.2
A space station and spacecraft are in orbits with the following parameters:
Space station | Spacecraft | |
Perigee × apogee (altitude) | 300 km circular | 318.50 × 515.51 km |
Period (computed using above data) | 1.508 hr | 1.548 hr |
True anomaly, θ | 60° | 349.65° |
Inclination, i | 40° | 40.130° |
RA, Ω | 20° | 19.819° |
Argument of perigee, ω | 0° (arbitrary) | 70.662° |
Compute the total delta-v required for an eight-hour, two-impulse rendezvous trajectory.
Step-by-Step
Verified Solution
We use the given data in Algorithm 4.1 to obtain the state vectors of the two spacecraft in the geocentric equatorial frame
Space station:
r_{0}= 1622.39 \hat{I}+ 5305.10\hat{J} + 3717.44\hat{K} (km)v_{0}= −7.29977\hat{I}+ 0.492357\hat{J} + 2.48318\hat{K} (km/s)
Spacecraft:
r= 1612.75\hat{I}+ 5310.19 \hat{J} + 3750.33\hat{K} (km)v= −7.35321\hat{I}+ 0.463856 \hat{J} + 2.46920\hat{K} (km/s)
The space station reference frame unit vectors (at this instant) are, by definition:
\hat{i}=\frac{r_{0}}{\left\|r_{0}\right\| } = 0.242945\hat{I}+ 0.794415 \hat{J} + 0.556670\hat{K}\hat{j}=\frac{v_{0}}{\left\|v_{0}\right\| } = −0.944799\hat{I}+ 0.063725 \hat{J} + 0.321394\hat{K}
\hat{k}=\hat{i}\times \hat{j} = 0.219846\hat{I}− 0.604023 \hat{J} + 0.766044\hat{K}
Therefore, the transformation matrix from the geocentric equatorial frame into space station frame is (at this instant)
[Q]_{Xx}=\left[\begin{matrix} 0.242945& 0.794415& 0.556670 \\ −0.944799 & 0.063725 & 0.321394 \\0.219846 & −0.604023 & 0.766044 \end{matrix} \right]The position vector of the spacecraft relative to the space station (in the geocentric equatorial frame) is
\delta r=r-r_{0}= −9.63980\hat{I}+5.08240 \hat{J} + 32.8821\hat{K}(km)The relative velocity is given by the formula (Equation 1.38)
v=v_{O}+\Omega \times r_{rel}+v_{rel} (1.38)
\delta v=v-v_{0}-\Omega_{\text{ space station}}\times \delta rwhere \Omega_{\text{ space station}}=n\hat{k} and n, the mean motion of the space station, is
n=\frac{v_{0}}{r_{0}}=\frac{7.72627}{6678}=0.00115697 rad/s (a)
Thus
\delta v= −7.35321\hat{I}+0.463856 \hat{J} + 2.46920\hat{K}-(-7.29977\hat{I}+0.492357 \hat{J}+2.48318 \hat{K} )so that
In space station coordinates, the relative position vector δr_{0} at the beginning of the rendezvous maneuver is
\left\{δ{r_{0}}\right\} =[Q]_{Xx}\left\{\delta r\right\} =\left[\begin{matrix} 0.242945& 0.794415& 0.556670 \\ −0.944799& 0.063725& 0.321394 \\ 0.219846& −0.604023&0.766044\end{matrix} \right] \left\{\begin{matrix} −9.63980 \\ 5.08240 \\ 32.8821 \end{matrix} \right\} =\left\{\begin{matrix} 20 \\ 20 \\20 \end{matrix} \right\} (km) (b)
Likewise, the relative velocity δ{v_{0}}^{-} just before launch into the rendezvous trajectory is
=\left\{\begin{matrix} −0.02000 \\ 0.02000\\−0.005000 \end{matrix} \right\} (km/s)
The Clohessy–Wiltshire matrices, for t = t_{f} = 8 hr = 28800 s and n = 0.00115697 rad/s [from (a)], are
[\Phi _{rr}]=\left[\begin{matrix} 4−3\cos nt& 0 &0 \\ 6( \sin nt − nt)&1 &0 \\ 0& 0& \cos nt \end{matrix} \right] =\left[\begin{matrix} 4.98383& 0 &0 \\ −194.257 &1.000 &0 \\ 0& 0& −0.327942 \end{matrix} \right][\Phi _{rv}]=\left[\begin{matrix} \frac{1}{2} \sin nt & \frac{2}{n} (1 − \cos nt) &0 \\ \frac{2}{n} (\cos nt − 1) & \frac{1}{n} (4 \sin nt − 3nt) &0 \\ 0& 0&\frac{1}{n} \sin nt \end{matrix} \right]
=\left[\begin{matrix}816.525 & 2295.54 &0 \\ −2295.54 & −83 133.9 &0 \\ 0& 0& 816.525 \end{matrix} \right]
[\Phi _{vr}]=\left[\begin{matrix}3n \sin nt & 0 &0 \\6n(\cos nt − 1)&0&0\\0&0&−n \sin nt\end{matrix}\right] =\left[\begin{matrix}0.00327897 & 0 &0 \\−0.00921837 & 0&0 \\ 0& 0& −0.00109299 \end{matrix} \right]
[\Phi _{vv}]=\left[\begin{matrix} \cos nt& 2 \sin nt &0 \\ −2 \sin nt & 4 \cos nt − 3&0 \\ 0& 0& \cos nt \end{matrix} \right]
=\left[\begin{matrix}−0.327942&1.88940 &0 \\ −1.88940 &−4.31177 &0 \\ 0& 0&−0.327942 \end{matrix} \right]
From Equation 7.46 and (b) we find \delta v^{+}_{0}:
\left\{ \delta v^{+}_{0}= \right\} =-\left[\Phi _{rv} (t_{f})\right]^{-1}\left[\Phi _{rr} (t_{f})\right] \left\{\delta r_{0}\right\} (7.46)
\left\{\begin{matrix}\delta u^{+}_{0} \\\delta v^{+}_{0}\\ \delta w^{+}_{0}\end{matrix} \right\} =- \left[\begin{matrix}816.525& 2295.54&0 \\−2295.54 &−83 133.9 &0 \\ 0& 0& 816.525\end{matrix} \right] ^{-1}\times \left[\begin{matrix} 4.98383 &0 &0 \\ −194.257 &1.000 & 0 \\ 0 &0 &−0.327942 \end{matrix} \right] \left\{\begin{matrix} 20 \\ 20 \\20 \end{matrix} \right\}
=\left\{\begin{matrix}0.00936084 \\ −0.0467514\\0.00803263 \end{matrix} \right\} (km/s) (c)
From Equation 7.42b, evaluated at t = t_{f} , we have
\left\{\delta v(t)\right\}=\left[\Phi _{vr}(t)\right]\left\{\delta r_{0}\right\}+ \left[\Phi _{vv}(t)\right]\left\{\delta v_{0}\right\} (7.24b)
\left\{ \delta v_{f} \right\}=\left[\Phi _{vr}\left(t_{f}\right) \right]\left\{\delta r_{0}\right\}+\left[\Phi _{vv}\left(t_{f}\right) \right] \left\{\delta v_{0}^{+}\right\}Substituting (b) and (c),
\left\{\begin{matrix} \delta u^{-}_{f} \\\delta v^{-}_{f} \\\delta w^{-}_{f} \end{matrix} \right\} =\left[\begin{matrix} 0.00327897 &0 &0 \\ −0.00921837& 0& 0 \\ 0& 0& −0.00109299 \end{matrix} \right] \left\{\begin{matrix} 20 \\ 20 \\ 20 \end{matrix} \right\}
\left\{\begin{matrix} \delta u^{-}_{f} \\\delta v^{-}_{f} \\\delta w^{-}_{f} \end{matrix} \right\} =\left\{\begin{matrix}−0.0258223 \\ −0.000472444 \\\ −0.0222449 \end{matrix} \right\} (Km/s) (d)
Delta-v at the beginning of the rendezvous maneuver is found as
\left\{\Delta v_{0}\right\}=\left\{\delta v^{+}_{0}\right\}-\left\{\delta v^{-}_{0} \right\} =\left\{\begin{matrix} 0.00936084 \\−0.0467514 \\ 0.00803263 \end{matrix} \right\}-\left\{\begin{matrix} −0.02\\ 0.02 \\−0.005 \end{matrix} \right\} =\left\{\begin{matrix} 0.0293608 \\ −0.0667514 \\0.0130326 \end{matrix} \right\}Delta-v at the conclusion of the maneuver is
\left\{\Delta v_{f}\right\}=\left\{\delta v^{+}_{f}\right\}-\left\{\delta v^{-}_{f} \right\} =\left\{\begin{matrix} 0 \\ 0 \\0 \end{matrix} \right\}- \left\{\begin{matrix} −0.0258223\\ −0.000472444 \\ −0.0222449 \end{matrix} \right\}=\left\{\begin{matrix} 0.0258223 \\ 0.000472444 \\ 0.0222449 \end{matrix} \right\}(km/s)The total delta-v requirement is
\Delta v_{total}= \left\|\Delta v_{0}\right\| +\left\|\Delta v_{f}\right\| =0.0740787 + 0.03559465 = 0.109673 km/s = 109.7 m/sFrom Equation 7.42a, we have, for 0 < t < t_{f} ,
\left\{\delta r(t)\right\}=\left[\Phi _{rr}(t)\right]\left\{\delta r_{0}\right\}+ \left[\Phi _{rv}(t)\right]\left\{\delta v_{0}\right\} (7.42a)
\left\{ \begin{matrix} \delta x(t)\\ \delta y(t) \\ \delta z(t) \end{matrix} \right\}=\left[\begin{matrix} 4 − 3 \cos nt & 0 & 0 \\ 6(\sin nt − nt) & 1 &0 \\ 0 & 0 & \cos nt \end{matrix} \right]\left\{\begin{matrix} 20 \\ 20 \\ 20 \end{matrix} \right\}
Substituting n from (a), we obtain the relative position vector as a function of time. It is plotted in Figure 7.7.
