Products

Holooly Rewards

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

Holooly Ads. Manager

Advertise your business, and reach millions of students around the world.

Holooly Tables

All the data tables that you may search for.

Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Holooly Sources

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Holooly Help Desk

Need Help? We got you covered.

Chapter 7

Q. 7.2

A space station and spacecraft are in orbits with the following parameters:

Space station  Spacecraft
Perigee × apogee (altitude) 300 km circular 318.50 × 515.51 km
Period (computed using above data) 1.508 hr 1.548 hr
True anomaly, θ 60° 349.65°
Inclination, i 40° 40.130°
RA, Ω 20° 19.819°
Argument of perigee, ω 0° (arbitrary) 70.662°

Compute the total delta-v required for an eight-hour, two-impulse rendezvous trajectory.

Step-by-Step

Verified Solution

We use the given data in Algorithm 4.1 to obtain the state vectors of the two spacecraft in the geocentric equatorial frame

Space station:

r_{0}= 1622.39 \hat{I}+ 5305.10\hat{J} + 3717.44\hat{K} (km)

 

v_{0}= −7.29977\hat{I}+ 0.492357\hat{J} + 2.48318\hat{K} (km/s)

Spacecraft:

r= 1612.75\hat{I}+ 5310.19 \hat{J} + 3750.33\hat{K} (km)

 

v= −7.35321\hat{I}+ 0.463856 \hat{J} + 2.46920\hat{K} (km/s)

The space station reference frame unit vectors (at this instant) are, by definition:

\hat{i}=\frac{r_{0}}{\left\|r_{0}\right\| } = 0.242945\hat{I}+ 0.794415 \hat{J} + 0.556670\hat{K}

 

\hat{j}=\frac{v_{0}}{\left\|v_{0}\right\| } = −0.944799\hat{I}+ 0.063725 \hat{J} + 0.321394\hat{K}

 

\hat{k}=\hat{i}\times \hat{j} = 0.219846\hat{I}− 0.604023 \hat{J} + 0.766044\hat{K}

Therefore, the transformation matrix from the geocentric equatorial frame into space station frame is (at this instant)

[Q]_{Xx}=\left[\begin{matrix} 0.242945& 0.794415& 0.556670 \\ −0.944799 & 0.063725 & 0.321394 \\0.219846 & −0.604023 & 0.766044 \end{matrix} \right]

The position vector of the spacecraft relative to the space station (in the geocentric equatorial frame) is

\delta r=r-r_{0}= −9.63980\hat{I}+5.08240 \hat{J} + 32.8821\hat{K}(km)

The relative velocity is given by the formula (Equation 1.38)

v=v_{O}+\Omega \times r_{rel}+v_{rel}       (1.38)

\delta v=v-v_{0}-\Omega_{\text{ space station}}\times \delta r

where \Omega_{\text{ space station}}=n\hat{k} and n, the mean motion of the space station, is

n=\frac{v_{0}}{r_{0}}=\frac{7.72627}{6678}=0.00115697   rad/s         (a)

Thus

\delta v= −7.35321\hat{I}+0.463856 \hat{J} + 2.46920\hat{K}-(-7.29977\hat{I}+0.492357 \hat{J}+2.48318 \hat{K} )
− (0.00115697)\left[\begin{matrix} \hat{I}& \hat{J} &\hat{K} \\ 0.219846& −0.604023& 0.766044 \\ −9.63980& 5.08240& 32.8821\end{matrix} \right]

so that

\delta v= −0.024854\hat{I}− 0.01159370 \hat{J} − 0.00853577\hat{K}(km/s)

In space station coordinates, the relative position vector δr_{0} at the beginning of the rendezvous maneuver is

\left\{δ{r_{0}}\right\} =[Q]_{Xx}\left\{\delta r\right\} =\left[\begin{matrix} 0.242945& 0.794415& 0.556670 \\ −0.944799& 0.063725& 0.321394 \\ 0.219846& −0.604023&0.766044\end{matrix} \right] \left\{\begin{matrix} −9.63980 \\ 5.08240 \\ 32.8821 \end{matrix} \right\} =\left\{\begin{matrix} 20 \\ 20 \\20 \end{matrix} \right\} (km)            (b)

Likewise, the relative velocity δ{v_{0}}^{-} just before launch into the rendezvous trajectory is

\left\{δ{v_{0}}^{-}\right\} =[Q]_{Xx}\left\{\delta v\right\} =\left[\begin{matrix} 0.242945 & 0.794415& 0.556670 \\ −0.944799 &0.063725& 0.321394 \\ 0.219846 & −0.604023& 0.766044 \end{matrix} \right] \left\{\begin{matrix} −0.024854 \\ −0.0115937 \\ −0.00853578 \end{matrix} \right\}

 

=\left\{\begin{matrix} −0.02000 \\ 0.02000\\−0.005000 \end{matrix} \right\} (km/s)

The Clohessy–Wiltshire matrices, for t = t_{f} = 8 hr = 28800 s and n = 0.00115697 rad/s [from (a)], are

[\Phi _{rr}]=\left[\begin{matrix} 4−3\cos nt& 0 &0 \\ 6( \sin nt − nt)&1 &0 \\ 0& 0& \cos nt \end{matrix} \right] =\left[\begin{matrix} 4.98383& 0 &0 \\ −194.257 &1.000 &0 \\ 0& 0& −0.327942 \end{matrix} \right]

 

[\Phi _{rv}]=\left[\begin{matrix} \frac{1}{2} \sin nt & \frac{2}{n} (1 − \cos nt) &0 \\ \frac{2}{n} (\cos nt − 1) & \frac{1}{n} (4 \sin nt − 3nt) &0 \\ 0& 0&\frac{1}{n} \sin nt \end{matrix} \right]

 

=\left[\begin{matrix}816.525 & 2295.54 &0 \\ −2295.54 & −83 133.9 &0 \\ 0& 0& 816.525 \end{matrix} \right]

 

[\Phi _{vr}]=\left[\begin{matrix}3n \sin nt & 0 &0 \\6n(\cos nt − 1)&0&0\\0&0&−n \sin nt\end{matrix}\right] =\left[\begin{matrix}0.00327897 & 0 &0 \\−0.00921837 & 0&0 \\ 0& 0& −0.00109299 \end{matrix} \right]

 

[\Phi _{vv}]=\left[\begin{matrix} \cos nt& 2 \sin nt &0 \\ −2 \sin nt & 4 \cos nt − 3&0 \\ 0& 0& \cos nt \end{matrix} \right]

 

=\left[\begin{matrix}−0.327942&1.88940 &0 \\ −1.88940 &−4.31177 &0 \\ 0& 0&−0.327942 \end{matrix} \right]

From Equation 7.46 and (b) we find \delta v^{+}_{0}:

\left\{ \delta v^{+}_{0}= \right\} =-\left[\Phi _{rv} (t_{f})\right]^{-1}\left[\Phi _{rr} (t_{f})\right] \left\{\delta r_{0}\right\}     (7.46)

\left\{\begin{matrix}\delta u^{+}_{0} \\\delta v^{+}_{0}\\ \delta w^{+}_{0}\end{matrix} \right\} =- \left[\begin{matrix}816.525& 2295.54&0 \\−2295.54 &−83 133.9 &0 \\ 0& 0& 816.525\end{matrix} \right] ^{-1}

 

\times \left[\begin{matrix} 4.98383 &0 &0 \\ −194.257 &1.000 & 0 \\ 0 &0 &−0.327942 \end{matrix} \right] \left\{\begin{matrix} 20 \\ 20 \\20 \end{matrix} \right\}

 

=-\left[\begin{matrix} 816.525& 2295.54 &0 \\ −2295.54& −83 133.9 & 0 \\ 0 &0 & 816.525 \end{matrix} \right]^{-1} \left\{\begin{matrix} 99.6765 \\ −3865.14 \\−6.55884 \end{matrix} \right\}

 

=\left\{\begin{matrix}0.00936084 \\ −0.0467514\\0.00803263 \end{matrix} \right\} (km/s)      (c)

From Equation 7.42b, evaluated at t = t_{f} , we have

\left\{\delta v(t)\right\}=\left[\Phi _{vr}(t)\right]\left\{\delta r_{0}\right\}+ \left[\Phi _{vv}(t)\right]\left\{\delta v_{0}\right\}    (7.24b)

\left\{ \delta v_{f} \right\}=\left[\Phi _{vr}\left(t_{f}\right) \right]\left\{\delta r_{0}\right\}+\left[\Phi _{vv}\left(t_{f}\right) \right] \left\{\delta v_{0}^{+}\right\}

Substituting (b) and (c),

\left\{\begin{matrix} \delta u^{-}_{f} \\\delta v^{-}_{f} \\\delta w^{-}_{f} \end{matrix} \right\} =\left[\begin{matrix} 0.00327897 &0 &0 \\ −0.00921837& 0& 0 \\ 0& 0& −0.00109299 \end{matrix} \right] \left\{\begin{matrix} 20 \\ 20 \\ 20 \end{matrix} \right\}

 

+\left[\begin{matrix}−0.327942 & 1.88940&0 \\−1.88940& −4.31177& 0 \\ 0& 0&−0.327942 \end{matrix} \right] \left\{\begin{matrix} 0.00936084 \\−0.0467514 \\ 0.00803263 \end{matrix} \right\}

 

\left\{\begin{matrix} \delta u^{-}_{f} \\\delta v^{-}_{f} \\\delta w^{-}_{f} \end{matrix} \right\} =\left\{\begin{matrix}−0.0258223 \\ −0.000472444 \\\ −0.0222449 \end{matrix} \right\} (Km/s)         (d)

Delta-v at the beginning of the rendezvous maneuver is found as

\left\{\Delta v_{0}\right\}=\left\{\delta v^{+}_{0}\right\}-\left\{\delta v^{-}_{0} \right\} =\left\{\begin{matrix} 0.00936084 \\−0.0467514 \\ 0.00803263 \end{matrix} \right\}-\left\{\begin{matrix} −0.02\\ 0.02 \\−0.005 \end{matrix} \right\} =\left\{\begin{matrix} 0.0293608 \\ −0.0667514 \\0.0130326 \end{matrix} \right\}

Delta-v at the conclusion of the maneuver is

\left\{\Delta v_{f}\right\}=\left\{\delta v^{+}_{f}\right\}-\left\{\delta v^{-}_{f} \right\} =\left\{\begin{matrix} 0 \\ 0 \\0 \end{matrix} \right\}- \left\{\begin{matrix} −0.0258223\\ −0.000472444 \\ −0.0222449 \end{matrix} \right\}=\left\{\begin{matrix} 0.0258223 \\ 0.000472444 \\ 0.0222449 \end{matrix} \right\}(km/s)

The total delta-v requirement is

\Delta v_{total}= \left\|\Delta v_{0}\right\| +\left\|\Delta v_{f}\right\| =0.0740787 + 0.03559465 = 0.109673   km/s = 109.7 m/s

From Equation 7.42a, we have, for 0 < t < t_{f} ,

\left\{\delta r(t)\right\}=\left[\Phi _{rr}(t)\right]\left\{\delta r_{0}\right\}+ \left[\Phi _{rv}(t)\right]\left\{\delta v_{0}\right\}  (7.42a)

\left\{ \begin{matrix} \delta x(t)\\ \delta y(t) \\ \delta z(t) \end{matrix} \right\}=\left[\begin{matrix} 4 − 3 \cos nt & 0 & 0 \\ 6(\sin nt − nt) & 1 &0 \\ 0 & 0 & \cos nt \end{matrix} \right]\left\{\begin{matrix} 20 \\ 20 \\ 20 \end{matrix} \right\}

 

+\left[\begin{matrix} \frac{1}{n}\sin nt & \frac{2}{n} (1 − \cos nt) & 0 \\ \frac{2}{n} (\cos nt −1) & \frac{1}{n} (4 \sin nt − 3nt) &0 \\ 0 & 0 & \frac{1}{n} \sin nt \end{matrix} \right]\left\{\begin{matrix}0.00936084 \\ −0.0467514 \\ 0.00803263 \end{matrix} \right\}

Substituting n from (a), we obtain the relative position vector as a function of time. It is plotted in Figure 7.7.

A space station and spacecraft are in orbits with the following parameters: