## Subscribe \$4.99/month

Un-lock Verified Step-by-Step Experts Answers.

## Textbooks & Solution Manuals

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

## Tip our Team

Our Website is free to use.
To help us grow, you can support our team with a Small Tip.

## Holooly Tables

All the data tables that you may search for.

## Holooly Help Desk

Need Help? We got you covered.

## Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Products

## Textbooks & Solution Manuals

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

## Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

## Holooly Help Desk

Need Help? We got you covered.

## Q. 7.5

AT THE RACETRAK

GOAL Apply the concepts of centripetal acceleration and tangential velocity.

PROBLEM A race car accelerates uniformly from a speed of $40.0 \mathrm{~m} / \mathrm{s}$ to a speed of $60.0 \mathrm{~m} / \mathrm{s}$ in $5.00 \mathrm{~s}$ while traveling counterclockwise around a circular track of radius $4.00 \times 10^2 \mathrm{~m}$. When the car reaches a speed of $50.0 \mathrm{~m} / \mathrm{s}$, calculate (a) the magnitude of the car’s centripetal acceleration, (b) the angular velocity, (c) the magnitude of the tangential acceleration, and (d) the magnitude of the total acceleration.

STRATEGY Substitute values into the definitions of centripetal acceleration (Eq. 7.13),

$a_c=\frac{v^2}{r}$      [7.13]

tangential velocity (Eq. 7.10),

$v_t = rω$      [7.10]

and total acceleration (Eq. 7.18).

$a = \sqrt{a_t^2 + a_c^2}$      [7.18]

Dividing the change in tangential velocity by the time yields the tangential acceleration.

## Verified Solution

(a) Calculate the magnitude of the centripetal acceleration when $v=50.0 \mathrm{~m} / \mathrm{s}$.

Substitute into Equation 7.13:

$a_c=\frac{v^2}{r}=\frac{(50.0 \mathrm{~m} / \mathrm{s})^2}{4.00 \times 10^2 \mathrm{~m}}=6.25 \mathrm{~m} / \mathrm{s}^2$

(b) Calculate the angular velocity.

Solve Equation $7.10$ for $\omega$ and substitute:

$\omega=\frac{v}{r}=\frac{50.0 \mathrm{~m} / \mathrm{s}}{4.00 \times 10^2 \mathrm{~m}}=0.125 \mathrm{rad} / \mathrm{s}$

(c) Calculate the magnitude of the tangential acceleration.

Divide the change in tangential velocity by the time:

$a_t=\frac{v_f-v_i}{\Delta t}=\frac{60.0 \mathrm{~m} / \mathrm{s}-40.0 \mathrm{~m} / \mathrm{s}}{5.00 \mathrm{~s}}=4.00 \mathrm{~m} / \mathrm{s}^2$

(d) Calculate the magnitude of the total acceleration.

Substitute into Equation 7.18:

\begin{aligned}&a=\sqrt{a_t^2+a_c^2}=\sqrt{\left(4.00 \mathrm{~m} / \mathrm{s}^2\right)^2+\left(6.25 \mathrm{~m} / \mathrm{s}^2\right)^2} \\&a=7.42 \mathrm{~m} / \mathrm{s}^2\end{aligned}

REMARKS We can also find the centripetal acceleration by substituting the derived value of $\omega$ into Equation 7.17.

$a_c = \frac{r^2 ω^2}{r} = r ω^2$      [7.17]