Chapter 6
Q. 6.9
Calculate the maximum longitudinal and circumferential stresses in the cylinder shown in Fig. 6.16 due to internal pressure P.

Step-by-Step
Verified Solution
From Fig. 6.16
f + F = H (1)
where from Section 6.4.1,
H=\frac{P r \tan \alpha^{\prime}}{2}.
The deflection compatibility between the cylinder and cone is given by
deflection of cylinder at junction due to M and f
= deflection of cone at junction due to M and F (2)
Similarly,
rotation of cylinder at junction due to M and f
= rotation of cone at junction due to M and F (3)
Using Tables 5.2 and 6.4 and solving Eqs. 1,2 , and 3 result in the following expressions:
Table 5.2 Various Discontinuity Functions | |||||
Functions* | ![]() |
![]() |
![]() |
![]() |
|
Edge Functions | W | \frac{-M_o}{2 \beta^{2} \cdot D} | \frac{Q_o}{2 \beta^{3} D} | Δo | 0 |
θ | \frac{M_{o}}{\beta . D} | \frac{-Q_o}{2 \beta^{2} \cdot D} | 0 | θ_o | |
M_θ | M_o | 0 | 2 \beta^{2} \cdot D \cdot \Delta o | 2 \beta \cdot D \cdot \theta_{o} | |
N_θ | -2 M_{o} \beta^{2} \cdot r | 2 \beta \cdot r \cdot Q_o | \frac{E \cdot t \cdot \Delta o}{r} | 0 | |
Q_o | 0 | Q_o | 4 \beta^{3} \cdot 0 . \Delta o | 2 \beta^{2} \cdot D \cdot \theta_{o} | |
General Functions | W | \frac{-M_{o}}{2 \beta^{2} \cdot D} B_{\beta x} | \frac{Q_o}{2 \beta^{3} D} C_{\beta X} | \Delta_{o}\left(2 C_{\beta x}-B_{\beta x}\right) | \frac{\theta_o}{\beta}\left(C_{\beta x} -B_{\beta x}\right) |
θ | \frac{M_{o}}{\beta . D} C_{\beta x} | \frac{-Q_o}{2 \beta^{2} D} \cdot A_{\beta x} | 2 \beta \Delta_{o}\left(A_{ \beta x}-C_{ \beta x}\right) | \theta_{0}\left(A_{\beta x}-2 C_{\beta x}\right) | |
M_X | M_{o} \cdot A_{\beta x} | \frac{Q_o}{\beta} \cdot D_{\beta X} | 2 \beta^{2} \cdot D \cdot \Delta_o\left(A_{ \beta x}-C_{ \beta x}\right) | 2\beta \cdot D \cdot \theta_{0} \left(D_{\beta x}- A_{\beta x}\right) | |
N_θ | -2 M_{o} \beta^{2} \cdot r \cdot B_{\beta x} | 2 \beta \cdot r \cdot Q_{o} \cdot C_{\beta x} | \frac{E \cdot t}{r} \cdot \Delta_o\left(2 C_{\beta x}-B_{\beta x}\right) | \frac{\text { E.t. } \theta_{o}}{r \beta}\left(C_{\beta x}-B_{\beta x}\right) | |
Q_X | -2 \beta . M_o . D_{\beta X} | Q_{o} \cdot B_{\beta X} | 4 \beta^{3} D \cdot \Delta_{o}\left(B_{\beta X}-D_{\beta X}\right) | 2 \beta^{2} \cdot D \cdot \theta_{o}\left(2 D_{\beta x}+B_{\beta x})\right. | |
^*Clockwise moments and rotation are positive at point 0 . Outward forces and deflections are positive at point 0 . M_{\theta}=\mu M_{x}. |
Table 6.4 M_{\theta}=\mu M \phi. |
||
![]() |
![]() |
|
Q | -\sqrt{2} e^{-\beta x} \sin \phi \cos (\beta x+\pi / 4) H_o | \frac{-2 \beta e^{-\beta x} \sin \phi}{l} \sin (\beta x) M_o |
N_θ | \frac{-2 r_{2} \cdot \beta e^{-\beta x}}{l} \sin { }^{2} \phi \cos (\beta x) H_o | \frac{2 \sqrt{2} r_{2} \beta^{2}e^{-\beta x} }{l^{2}} \sin ^{2} \phi \cos (\beta x+\pi / 4) M_o |
N_\phi | -\sqrt{2} e^{-\beta x} \cos \phi \cos \left(\beta x+\frac{\pi}{4}\right) H_o | \frac{-2 \beta}{\ell} e^{-\beta x} \cos \phi \sin (\beta x) M_o |
M_\phi | \frac{\ell}{\beta} e^{-\beta x} \sin \beta x H_o | -\sqrt{2} e^{-\beta x} \sin (\beta x+\pi / 4) M_o |
δ | \frac{ H_ol ^{3} e^{-\beta x}}{2 D \beta^{3} \sin \phi}\left[\cos \beta x-\frac{\mu \ell}{\sqrt{2}r_{2} \beta}\frac{\cot \phi}{\sin \phi} \cos (\beta x+\pi /4)\right] | \begin{aligned}&\frac{-\ell^{2} e^{-\beta x}}{2 D \beta^{2} \sin \phi}[\sqrt{2} \cos (\beta x+\pi / 2) \\&\left.+\mu \frac{1}{r_{2}} \frac{\cos \phi \sin \beta x}{\beta \sin ^{2} \phi}\right] M_o \end{aligned} |
θ | \frac{-l^{2} e^{-\beta x} H_o}{\sqrt{2} D \beta^{2} \sin \phi} \text { sin }(\beta x+\pi / 4) | \frac{le^{-\beta x}}{D \beta s i n \phi} \cos \beta x \quad M_o |
where
\begin{aligned}H &=\frac{P r \tan \alpha^{\prime}}{2} \\V_{1} &=\frac{\cos ^{2} \alpha^{\prime}\left(3+\cos ^{2} \alpha^{\prime}\right)}{1+\cos ^{2} \alpha^{\prime}\left(6+\cos ^{2} \alpha^{\prime}\right)} \\V_{2} &=\frac{V_{1}}{\left(3+\cos ^{2} \alpha^{\prime}\right)} \\\beta &=\sqrt[4]{\frac{3\left(1-\mu^{2}\right)}{r^{2} t^{2}}}\end{aligned}The maximum longitudinal stress due to M and pressure is expressed as
\sigma_{x}=\frac{P r}{t}\left(0.5+4.559 V_{2} \sqrt{\frac{r}{t}} \tan \alpha^{\prime}\right)whereas the maximum circumferential stress due to M and pressure is given by
\sigma_{\theta}=\frac{P r}{t}\left[1.0-1.316 \sqrt{\frac{r}{t}}\left(V_{1}-2 V_{2}\right) \tan \alpha^{\prime}\right]