Chapter 7
Q. 7.2
Calculate the maximum stress* induced in a cast iron pipe of external diameter 40 mm, of internal diameter 20 mm and of length 4 metre when the pipe is supported at its ends and carries a point load of 80 N at its centre.
*The bending stress will be maximum at the section where B.M. is maximum. This is because
\frac{M}{I}=\frac{\sigma}{y} \text { or } \quad \sigma=\frac{M}{I} \times y \text {. }
Step-by-Step
Verified Solution
Given :
External dia., D = 40 mm
Internal dia., d = 20 mm
Length, L = 4 m = 4 × 1000 = 4000 mm
Point load, W = 80 N
In case of simply supported beam carrying a point load at the centre, the maximum bending moment is at the centre of the beam.
And maximum B.M. =\frac{W \times L}{4}
∴ Maximum B.M. =\frac{80 \times 4000}{4}=8 \times 10^4 Nmm
∴ M = 8 × 10^4 Nmm
Fig. 7.6 (b) shows the cross-section of the pipe.
Moment of inertia of hollow pipe,
I=\frac{\pi}{64}\left[D^4-d^4\right]\\ \space \\ =\frac{\pi}{64}\left[40^4-20^4\right]=\frac{\pi}{64}[2560000-160000] \\ \space \\ = 117809.7 mm^4
Now using equation (7.4),
(7.4): \frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R}
\frac{M}{I}=\frac{\sigma}{y} …(i)
when y is maximum, stress will be maximum. But y is maximum at the top layer from the N.A.
∴ y_{\max }=\frac{D}{2}=\frac{40}{2}=20 mm
Equation (i) can be written as
\frac{M}{I}=\frac{\sigma_{\max }}{y_{\max }}
∴ \sigma_{\max }=\frac{M}{I} \times y_{\max }\\ \space \\ =\frac{8 \times 10^4 \times 20}{117809.7}= \pmb{1 3 . 5 8 N / mm ^2.}
