Chapter 2
Q. 2.10
Determine whether the following quantities are thermodynamic properties or not :
(a)\left(\frac{v}{T}\right) d p+\left(\frac{P}{T}\right) d v (b)\left(\frac{d T}{T}\right)+\left(\frac{p}{T}\right) d v
(c) \left(\frac{d T}{T}\right)+\left(\frac{p}{v}\right) d v (d) \left(\frac{d T}{T}\right)-\left(\frac{v}{T}\right) d p
Step-by-Step
Verified Solution
A quantity dz = Mdx + Ndy would be an exact differential, and hence a thermodynamic property, if
\left(\frac{\partial M}{\partial y}\right)_x=\left(\frac{\partial N}{\partial x}\right)_y
(a) Here M=\frac{v}{T}=\frac{R}{p}
(pv = RT)
\begin{aligned}&M=\frac{v}{T}=\frac{R}{p} \\&N=\frac{p}{T}=\frac{R}{v}\end{aligned}
x = p and y = v
\begin{aligned}\left(\frac{\partial M}{\partial y}\right)_x &=\left[\left(\frac{\partial}{\partial v}\right)\left(\frac{R}{p}\right)\right]_p=0 \\\left(\frac{\partial N}{\partial x}\right)_y &=\left[\left(\frac{\partial}{\partial p}\right)\left(\frac{R}{v}\right)\right]_v=0\end{aligned}
Since \left(\frac{\partial M}{\partial y}\right)_x=\left(\frac{\partial N}{\partial x}\right)_y,the given expression is an exact differential, and hence thermodynamic property.
(b) Here M=\frac{1}{T}
N=\frac{p}{T}
x = T and y = v
\begin{aligned}\left(\frac{\partial M}{\partial y}\right)_x &=\left[\left(\frac{\partial}{\partial v}\right)\left(\frac{1}{T}\right)\right]_T=0 \\\left(\frac{\partial N}{\partial x}\right)_y &=\left[\left(\frac{\partial}{\partial T}\right)\left(\frac{R}{v}\right)\right]_v=0\end{aligned}
\left(\frac{p}{T}=\frac{R}{v}\right)
Since \left(\frac{\partial M}{\partial y}\right)_x=\left(\frac{\partial N}{\partial x}\right)_y, the given expression is an exact differential, and hence a thermodynamic property.
(c) Here M=\frac{1}{T}
N=\frac{p}{v}
x = T and y = v
\begin{aligned}&\left(\frac{\partial M}{\partial y}\right)_x=\left[\left(\frac{\partial}{\partial v}\right)\left(\frac{1}{T}\right)\right]_T=0 \\&\left(\frac{\partial N}{\partial x}\right)_y=\left[\left(\frac{\partial}{\partial T}\right)\left(\frac{p}{v}\right)\right]_v \neq 0\end{aligned}
Since \left(\frac{\partial M}{\partial y}\right)_x \neq\left(\frac{\partial N}{\partial x}\right)_y, the given expression is not an exact differential, and hence not a thermodynamic property
(d) Here M=\frac{1}{T}
N=\frac{v}{T}
x = T and y = p
\begin{aligned}\left(\frac{\partial M}{\partial y}\right)_x &=\left[\left(\frac{\partial}{\partial p}\right)\left(\frac{1}{T}\right)\right]_T=0 \\\left(\frac{\partial N}{\partial x}\right)_y &=\left[\left(\frac{\partial}{\partial T}\right)\left(\frac{R}{P}\right)\right] p=0\end{aligned}
\left(\because \frac{v}{T}=\frac{R}{p}\right)
Since \left(\frac{\partial M}{\partial y}\right)_x=\left(\frac{\partial N}{\partial x}\right)_y, the given expression is an exact differential, and hence a thermodynamic property.