Chapter 1
Q. 1.6.5
Q. 1.6.5
Solving an Equation Containing Two Radicals
Solve \sqrt{2x + 3} – \sqrt{x + 1} = 1.
Step-by-Step
Verified Solution
↑
\fbox{Isolate one of the radicals on one side of the equation.}Step 1 \sqrt{2x + 3} = 1 +\sqrt{x + 1} Isolate \sqrt{2x + 3}.
Step 2 (\sqrt{2x + 3})² = (1 + \sqrt{x + 1})² Square each side.
2x + 3 = 1 + 2\sqrt{x + 1} +(x + 1) Be careful:
↑ (a + b)² = a² + 2ab + b²
\fbox{Don’t forget this term when squaring.}Step 1 x + 1 = 2\sqrt{x + 1} Isolate the remaining radical.
Step 2 (x + 1)² =(2\sqrt{x + 1})² Square again.
x² + 2x + 1 = 4(x + 1)←(ab)² = a²b² Apply the exponents.
x² + 2x + 1 = 4x + 4 Distributive property
Step 3 x² – 2x – 3 = 0 Write in standard form.
(x – 3)(x + 1) = 0 Factor.
x – 3 = 0 or x + 1 = 0 Zero-factor property
x = 3 or x = -1 Proposed solutions
Step 4
CHECK \sqrt{2x + 3} – \sqrt{x + 1} = 1 Original equation
\left. \begin{matrix}\sqrt{2(3)+3}-\sqrt{3+1} ≟ 1&\text{Let} x =3.\\ \sqrt{9}-\sqrt{4}≟ 1\\ 3-2≟ 1\\1=1 ✓& \text{True}\end{matrix}\right|\begin{matrix}\sqrt{2(-1)+3}-\sqrt{-1+1} ≟ 1&\text{Let} x = -1.\\\sqrt{1}-\sqrt{0}≟ 1\\ 1-0≟ 1\\1=1 ✓& \text{ True}\end{matrix}Both 3 and -1 are solutions of the original equation, so { -1, 3} is the solution set.