Products

Holooly Rewards

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

Holooly Ads. Manager

Advertise your business, and reach millions of students around the world.

Holooly Tables

All the data tables that you may search for.

Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Holooly Sources

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Holooly Help Desk

Need Help? We got you covered.

Chapter 6

Q. 6.9

Spacecraft B and C are both in the geocentric elliptical orbit (1) shown in Figure 6.20,from which it can be seen that the true anomalies are θ_{B} = 45^{◦} and θ_{C} = 150^{◦}. At the instant shown, spacecraft B executes a delta-v maneuver, embarking upon a trajector(2) which will intercept vehicle C in precisely one hour. Find the orbital parameters (e and h) of the intercept trajectory and the total delta-v required for the chasemaneuver.

Spacecraft B and C are both in the geocentric elliptical orbit (1) shown in Figure 6.20,from which it can be seen that the true anomalies are θB = 45◦ and θC = 150◦. At the instant shown, spacecraft B executes a delta-v maneuver, embarking upon a trajector(2)

Step-by-Step

Verified Solution

First, we must determine the parameters of orbit 1 in the usual way. The eccentricity is found using the orbit’s perigee and apogee, shown in Figure 6.20,

e_{1}=\frac{18 900 − 8100}{18 900 +8100}=0.4000

From the orbit equation,

r_{p}=\frac{h^{2}_{1}}{\mu}\frac{1}{1+e_{1}\cos(0)}\Rightarrow8100=\frac{h^{2}_{1}}{398600}\frac{1}{1+0.4}\Rightarrow h_{1}= 67 232    km^{2}  /s

Using Equation 2.72 yields the period,

T_{1}=\frac{2\pi }{\mu^{2} }(\frac{h_{1}}{\sqrt{1-e^{2}_{1} } } )^{3}=\frac{2\pi }{398600^{2} }(\frac{67232}{\sqrt{1-0.4^{2} } } )^{3}= 15 610   s

In perifocal coordinates (Equation 2.109) the position vector of B is

r=\frac{h^{2} }{\mu } \frac{1}{1+e\cos \theta }(\cos\theta \hat{p} +\sin\theta \hat{q} )                             (2.109)

r_{B}=\frac{h^{2}_{1} }{\mu } \frac{1}{1+e_{1}\cos \theta _{B}}(\cos\theta _{B}\hat{p} +\sin\theta _{B}\hat{q} ) =\frac{67232^{2} }{398600 } \frac{1}{1+0.4\cos45^{◦}}(\cos45^{◦}\hat{p} +\sin45^{◦}\hat{q} )

or

r_{B}=6250.6\hat{p}+ 6250.6\hat{q}  (km)              (a)

Likewise, according to Equation 2.115, the velocity at B on orbit 1 is

V=\frac{\mu }{h}[-\sin \theta \hat{p}+(e+\cos\theta)\hat{q}]                                                        (2.115)

V_{B_{1}}=\frac{\mu }{h}[-\sin \theta _{B}\hat{p}+(e+\cos\theta _{B})\hat{q}]=\frac{398600}{67232}[-\sin 45^{◦}\hat{p}+(0.4+\cos 45^{\circ})\hat{q}]

so that

V_{B_{1}}=-4.1922\hat{p}+6.563 \hat{q}  km/s                  (b)

Now we need to move spacecraft C along orbit 1 to the position C′ that it will occupy one hour later (Δt), when it will presumably be met by spacecraft B. To do that, we must first calculate the time since perigee passage at C. Since we know the true anomaly, the eccentric anomaly follows from Equation 3.10a,

\tan \frac{E}{2}=\sqrt{\frac{1-e}{1+e} }\tan \frac{\theta }{2}          (3.10a)

\tan \frac{E_{C}}{2}=\sqrt{\frac{1-e_{1}}{1+e_{1}} }\tan \frac{\theta _{C}}{2}=\sqrt{\frac{1-0.4}{1+0.4} }\tan \frac{150^{◦}}{2}=2.4432\Rightarrow E_{C}=2.3646 rad

Substituting this value into Kepler’s equation (Equations 3.5 and 3.11) yields the time since perigee passage,

M_{e}=\frac{2\pi }{T}t       (3.5)

M_{e}=E-e\sin E                  (3.11)

t_{C}=\frac{T_{1}}{2\pi }(E_{C}-e_{1}\sin E_{C})=\frac{15610}{2\pi }(2.3646 − 0.4 ·\sin 2.3646)= 5178 s

One hour later (Δt = 3600 s), the spacecraft will be in intercept position at C′,

t_{C′}=t_{C}+\Delta t=5178+3600=8778   s

The corresponding mean anomaly is

M_{e})_{C′}=2\pi \frac{t_{C′}}{T_{1}}=2\pi \frac{8778}{15610}=3.5331 rad

With this value of the mean anomaly, Kepler’s equation becomes

E_{C′}-e_{1}\sin E_{C′}=3.5331

Applying Algorithm 4.1 to the solution of this equation we get

E_{C′}=3.4223 rad

Substituting this result into Equation 3.10a yields the true anomaly at C′,

\tan \frac{\theta _{C′}}{2}=\sqrt{\frac{1+0.4}{1-0.4} }\tan \frac{3.4223 }{2}=-10.811\Rightarrow \theta _{C′}=190.57^{◦}

We are now able to calculate the perifocal position and velocity vectors at C′ on orbit 1:

r_{C′}=\frac{ 67 232^{2}}{398600}\frac{1}{1+0.4\cos 190.57^{◦}}(\cos 190.57^{◦}\hat{p}+\sin 4190.57^{◦}\hat{q})

= −18 372\hat{p} − 3428.1\hat{q}  (km)

V_{C′_{1}}=\frac{398600}{67232}[-\sin 190.57^{◦}\hat{p}+(0.4+\cos 190.57^{◦} )\hat{q}]

=1.0875\hat{p}-3.4566\hat{q}  (km/s)                        (c)

The intercept trajectory connecting points B and C′ are found by solving Lambert’s problem. Substituting r_{B}   and   r_{C′} along with Δt = 3600 s into Algorithm 5.2 yields

V_{B_{2}}= −8.1349\hat{p} + 4.0506\hat{q}   (km/s)  (d)

V_{C′_{2}}= −3.4745\hat{p} − 4.7943\hat{q}   (km/s)  (e)

 

Spacecraft B and C are both in the geocentric elliptical orbit (1) shown in Figure 6.20,from which it can be seen that the true anomalies are θB = 45◦ and θC = 150◦. At the instant shown, spacecraft B executes a delta-v maneuver, embarking upon a trajector(2)

MATLAB Verified Solution

Script Files

These velocities are most easily obtained by running the following MATLAB script, which executes Algorithm 5.2 by means of the function M-file lambert.m (Appendix D.11).

clear
global mu
deg = pi/180;
mu = 398600;
e = 0.4;
h = 67232;
theta1 = 45*deg;
theta2 = 190.57*deg;
delta_t = 3600;
rB = hˆ2/mu/(1 + e*cos(theta1))...
*[cos(theta1),sin(theta1),0];
rC_prime = hˆ2/mu/(1 + e*cos(theta2))...
*[cos(theta2),sin(theta2),0];
string = 'pro';
[vB2 vC_prime_2] = lambert(rB, rC_prime,...
delta_t, string)

From (b) and (d) we find
\Delta V_{B}=V_{{B}_{2}}-V_{{B}_{1}}=-3.426\hat{p}− 2.5132\hat{q}  (Km/s)
whereas (c) and (e) yield
\Delta V_{C'}=V_{C'_{1}}-V_{C'_{2}}= 4.5620\hat{p}+ 1.3376\hat{q}  (Km/s)
The anticipated, extremely large, delta-v requirement for this chase maneuver is the sum of the magnitudes of these two vectors,
\Delta V=\left\|\Delta V_{B}\right\|+\left\|\Delta V_{C'}\right\|= 4.6755 + 4.7540 = 9.430   km/s
We know that orbit 2 is an ellipse. To pin it down a bit more, we can use r_{B} and v_{{B}_{2}}to obtain the orbital elements from Algorithm 4.1, which yields
h_{2} = 76 167   km^{2}/s
e_{2} = 0.8500
a_{2} = 52 449  km
θ_{{B}_{2} }= 319.52^{◦}
These may be found quickly by running the following MATLAB script, in which the M-function coe_from_sv.m is Algorithm 4.1 (see Appendix D.8):

clear
global mu
mu = 398600;
rB = [6250.6   6250.6   0];
vB2 = [-8.1349   4.0506   0];
orbital_elements = coe_from_sv(rB, vB2)

The details of the intercept trajectory and the delta-v maneuvers are shown in Figure 6.21. A far less dramatic though more leisurely(and realistic)way for B to catch up with C would be to use a phasing maneuver.