Question 3.4: The linear operator A= [λ 0 0 b λ 0 0 c λ] , where bc ≠ 0 ha...
The linear operator
A= \left[\begin{matrix} \lambda & 0 & 0 \\ b & \lambda & 0 \\ 0 & c & \lambda \end{matrix} \right], where bc ≠ 0
has the following properties:
1. A satisfies its characteristic polynomial −(t − λ)³, i.e.
\left(A-\lambda I_{3} \right) ^{3}=O_{3\times 3}
but
A-\lambda I_{3} = \left[\begin{matrix} 0& 0 & 0 \\ b & 0 & 0 \\ 0 & c & 0 \end{matrix} \right] \neq O_{3\times 3}, \left(A-\lambda I_{3} \right) ^{2}= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ bc & 0 & 0 \end{matrix} \right] \neq O_{3\times 3}.
2. Hence, A has eigenvalues λ, λ, λ with associated eigenvectors t\overrightarrow{e_{1} },t\in R and t ≠ 0 and A is not diagonalizable.
3. Notice that A can be written as the sum of the following linear operators:
A=\lambda I_{3} + \left(A-\lambda I_{3} \right)
= \lambda \left[\begin{matrix} 1& 0 & 0 \\ \frac{b}{\lambda } & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] + \left[\begin{matrix} 0& 0 & 0 \\ 0 & 0 & 0 \\ 0 & c & 0 \end{matrix} \right].
Note that \ll \overrightarrow{e_{1} } \gg is the only invariant line (subspace). See Fig. 3.35 for some geometric feeling.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
Learn more on how we answer questions.