Products

Holooly Rewards

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

Holooly Ads. Manager

Advertise your business, and reach millions of students around the world.

Holooly Tables

All the data tables that you may search for.

Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Holooly Sources

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Holooly Help Desk

Need Help? We got you covered.

Chapter 5

Q. 5.4

The median dimensions of the two cells shown in the cellular section of Fig. 5.6 are A_{1} = 20   mm × 40   mm and  A_{2} = 50   mm ×40   mm with wall thicknesses t_{1} = 2   mm, t_{2} = 1.5   mm and  t_{3} = 3   mm. If the section is subjected to a torque of 320 Nm, determine the angle of twist per unit length and the maximum shear stress set up. The section is constructed from a light alloy with a modulus of rigidity G = 30 GN/m².

The median dimensions of the two cells shown in the cellular section of Fig. 5.6 are A1 = 20 mm × 40 mm and A2 = 50 mm ×40 mm with wall thicknesses t1 = 2 mm, t2 = 1.5 mm and t3 = 3 mm. If the section is subjected to a torque of 320 Nm, determine the angle of twist per unit length and the maximum

Step-by-Step

Verified Solution

From eqn. (5.18),

T=2(\tau _{1}t_{1}A{1}+\tau _{2}t_{2}A{2})       (5.18)

320=2(\tau _{1} \times 2\times 20\times 40+\tau _{2}\times 1.5\times 50\times 40 )10^{-9}    (1)

From eqn. (5.19),

\frac{2G\theta }{L}=\frac{1}{A_{1}}(\tau _{1}s_{1}+\tau _{3}s_{3}) =\frac{1}{A_{2}}(\tau _{2}s_{2}-\tau _{3}s_{3})     (5.19)

2\times 30\times 10^{9}\times \theta =\frac{1}{20\times 40\times 10^{-6}}[\tau _{1}(40+2\times 20)10^{-3}+\tau _{3}\times 40\times10^{-3} ]     (2)

and    2\times 30\times 10^{9}\times \theta =\frac{1}{50\times 40\times 10^{-6}}[\tau _{2}(40+2\times 50)10^{-3}-\tau _{3}\times 40\times10^{-3} ]              (3)

Equating (2) and (3),

From eqn. (5.17),

\tau _{1}t_{1}=\tau _{2}t_{2}+\tau _{3}t_{3}     (5.17)

2\tau _{1}=1.5\tau _{2}+3\tau _{3}         (4)
\frac{1}{8} [80\tau _{1}+40\tau _{3}]=\frac{1}{20}[140\tau _{2}-40\tau _{3}]

Multiply through by 40,

400\tau _{1}+200\tau _{3}=280\tau _{2}-80\tau _{3}
40\tau _{1}=28\tau _{2}-28\tau _{3}                  (5)

(5) × 60/28            85.7\tau _{1}60\tau _{2}-60\tau _{3}                (6)

But, from (4), multiplied by 20,

40\tau _{1}=30\tau _{2}+60\tau _{3}             (7)

(6) + (7),          125.7\tau _{1}=90\tau _{2}          (8)

and from (1),      320=(3.2\tau _{1}+6\tau _{2})10^{-6}

320\times 10^{6}=3.2\tau _{1}+6\tau _{2}               (9)

substituting for τ_{2} from (8),

320\times 10^{6}=3.2\tau _{1}+6\times \frac{125.7}{90} \tau _{1}
=3.2\tau _{1}+8.4\tau _{1}
∴               \tau _{1}=\frac{320\times 10^{6}}{11.6} =27.6\times 10^{6}=27.6   MN/m^{2}

From (8),

\tau _{2}=\frac{125.7}{90}\times 27.6=38.6   MN/m^{2}

From (4),

\tau _{3}=\frac{1}{3} (2\times 27.6-1.5\times 38.6)
=\frac{1}{3} (55.2-57.9)=\frac{1}{3}\times (-2.7) =-0.9   MN/m^{2}

The negative sign indicates that the direction of shear flow in the wall of thickness t_{3} is reversed from that shown in Fig. 5.6.

The maximum shear stress present in the section is thus 38.6 MN/m² in the 1.5 mm wall thickness.
From (3),

2\times 30\times 10^{9}\times \theta =\frac{(140t_{2}-40t_{3})}{50\times 40\times 10^{-3}}
=\frac{140\times 38.6\times 10^{6}-40(-0.9\times 10^{6})}{50\times 40\times 10^{-3}\times 2\times 30\times 10^{9}}

=\frac{(5.40+0.036)}{120}   radian
=\frac{5.440}{120}\times \frac{360}{2\pi } =2.6°

The angle of twist of the section is 2.6°.