The low-frequency voltage gain per stage is
A_{S}=-g_{\text {meff }}\left(r_{o}|| R_{D}\right)=-0.9 e-3 \times 20 \times 116=-2.088 \\
\tau_{p}=\left(R_{D} \| r_{o}\right)\left[C_{d b}+C_{g s}+\left(2+\left|A_{0}\right|\right) C_{g d}\right]+R_{g}\left[C_{g s}+\left(1+\left|A_{0}\right|\right) C_{g d}\right]=7.55 p s \\
B W_{S}=\frac{1}{2 \pi \tau_{p}}=21.1 G H z
G B W_{S}=44.05 \mathrm{GHz}
For the chain, A_{t o t}=2.088^{6}=82.86=38.36 \mathrm{~dB}, B W_{t o t}=\left(\sqrt{2^{1 / 6}-1}\right) 21.1 e 9=7.38 \mathrm{GHz} and G B W_{\text {tot }}=632.9 \mathrm{GHz}.
An exact computer simulation using the design kit models gives A_{S}=6.4 \mathrm{~dB}(2.089), B W_{s}=18.96 \mathrm{GHz}, and A_{\text {tot }}=38.37 \mathrm{~dB}, B W_{\text {tot }}=6.2 \mathrm{GHz}. The error between the hand calculations and exact simulation is 10 % for the stage and about 16 % for the entire chain.
(b) If we use scaling by k=2 : W_{1}=64 \mu \mathrm{m} , R_{D 1}=62.5 \Omega , W_{2}=32 \mu \mathrm{m}, R_{D 2}=125 \Omega, . . . , W_{6}=2 \mu \mathrm{m} , R_{D 6}=2 \mathrm{k} \Omega
The gain per stage remains unchanged, but the time constant and bandwidth of the stage change to
\tau_{p} =\left(R_{D} \| r_{\mathrm{o}}\right)\left[C_{g d}+C_{d b}+\frac{C_{g s}}{k}+\left(1+\left|A_{0}\right|\right) \frac{C_{g d}}{k}\right]+R_{g}\left[C_{g s}+\left(1+\left|A_{0}\right|\right) C_{g d}\right]\
=36.25[25.6 \mathrm{f}+44.8 \mathrm{f}+22.4 \mathrm{f}+3.1 \times 12.8 \mathrm{f}]+3.125[44.8 \mathrm{f}+3.1 \times 25.6 \mathrm{f}] \\
=4.9 \mathrm{ps}+0.388 \mathrm{ps}=5.288 \mathrm{ps}
We obtain B W_{S}^{\prime}=30.1 \mathrm{GHz}, almost a 50 % increase in stage bandwidth compared to the original amplifier, and B W_{t o t}^{\prime}=\left(\sqrt{2^{1 / 6}-1}\right) 30.1 e 9=10.53 \mathrm{GHz}.
Using computer simulation, we obtain B W^{\prime}_{S}=28.17 \mathrm{GHz},B W_{\text {tot }}^{\prime}=8.73 \mathrm{GHz},G B W^{\prime}{ }_{S}=59.15 \mathrm{GHz},G B W_{\text {tot }}^{\prime}=748.7 \mathrm{GHz}
Again, the error between hand calculations and computer simulations using design kit models is within 10 % for the single stage but increases to 17.1 % for the entire chain.
Note that, if we consider interconnect capacitance and the parasitic capacitance of the load resistor, the calculated bandwidth will be smaller because the interconnect capacitance is comparable to that of the smallest size stage.