Question 10.1: A 220-V, 6-pole, 50-Hz, single-winding single-phase inductio...

A 220-V, 6-pole, 50-Hz, single-winding single-phase induction motor has the following equivalent circuit parameters as referred to the stator.

R_{1m} = 3.0 \Omega,       X_{1m} = 5.0 \Omega

R_{2} = 1.5 \Omega,        X_{2} = 2.0 \Omega

Neglect the magnetizing current. When the motor runs at 97% of the synchronous speed, compute the following:

(a) The ratio E_{mf} /E_{mb}

(b) The ratio V_{f} /V_{b}

(c) The ratio T_{f} /T_{b}

(d) The gross total torque.

(e) The ratios T_{f} /(Total torque) and T_{b}/(Total torque)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Slip = s = 1 – 0.97 = 0.03

(a) From Fig. 10.5(c),

\frac{E_{m f}}{E_{m b}}=\frac{Z_{f}}{Z_{b}}=\frac{\left|j X \|\left(\frac{R_{2}}{s}+j X_{2}\right)\right|}{\left|j X \|\left(\frac{R_{2}}{2-s}+j X_{2}\right)\right|}

Since magnetizing current is neglected,  X=\infty

 

\frac{E_{m f}}{E_{m b}}=\frac{\left|R_{2} / s+j X_{2}\right|}{\left|R_{2}(2-s)+j X_{2}\right|}

 

=\frac{|1.5 / 0.03+j 2|}{|1.5 /(2-0.03)+j 2|}=23.38

(b)      V_{f} and V_{b} are components of stator voltage V_{m} , i.e

\bar{V}_{m}=\bar{V}_{f}+\bar{V}_{b}

These components are defined by redrawing the circuit model of Fig. 10.5(c) in the symmetrical form of Fig. 10.6. For the purpose of this problem  X=\infty , therefore

Impedance offered to V_{f}  component  =\frac{1}{2}\left[\left(3+\frac{1.5}{0.03}\right)+j(5+2)\right]=\frac{1}{2}(53+j 7)

Impedance offered to V_{b} component  =\frac{1}{2}\left[\left(3+\frac{1.5}{1.97}\right)+j(5+2)\right]=\frac{1}{2}(3.76+j 7)

Hence                                         \frac{V_{f}}{V_{b}}=\frac{|53+j 7|}{|3.76+j 7|}=6.73

(c) From Eqs (10.8a)   T_{f}=\frac{1}{\omega_{s}} P_{g f}  and (10.8b) T_{b}=\frac{1}{\omega_{s}} P_{g b}

 

\frac{T_{f}}{T_{b}}=\frac{P_{g f}}{P_{g b}}=\frac{\frac{1}{2} I_{m}^{2} R_{2} / s}{\frac{1}{2} I_{m}^{2} R_{2} /(2-s)}=\frac{2-s}{s}=\frac{2-0.03}{0.03}=65.7

(d) Total impedance as seen from stator terminal is

\bar{Z}(\text { Total })=\frac{1}{2}[(53+j 7)+(3.76+j 7)]=28.38+j 7=29.2 \angle 13.9^{\circ}

 

I_{m}=\frac{220}{29.2}=753 A

 

n_{s}=\frac{120 \times 50}{6}=1000 rpm

 

\omega_{s}=\frac{2 \pi \times 1000}{60}=104.72 rad / s

 

T_{f}=\frac{1}{\omega_{s}} I_{m}^{2} \frac{R_{2}}{2 s}                                      (i)

T_{b}=\frac{1}{\omega_{s}} I_{m}^{2} \frac{R_{2}}{2(2-s)}                                           (ii)

T_{\text {total }}=T_{f}-T_{b}

 

T_{\text {total }}=\frac{I_{m}^{2} R_{2}}{2 \omega_{s}}\left(\frac{1}{s}-\frac{1}{2-s}\right)                                                   (iii)

=\frac{(7.53)^{2} \times 1.5}{2 \times 104.72}\left(\frac{1}{0.03}-\frac{1}{1.97}\right)=13.31 Nm

(e) From Eqs (i), (ii) and (iii)

\frac{T_{f}}{T_{\text {total }}}=\frac{1 / s}{1 s-1 /(2-s)}=\frac{1}{1-\frac{s}{2-s}}=1.015

 

\frac{T_{b}}{T_{\text {total }}}=\frac{1 /(2-s)}{1 / s-1 /(2-s)}=\frac{1}{\frac{2-s}{s}-1}=0.015
10 1 2
10 1

Related Answered Questions