Question 9.19: A 3-phase, 415 V, 6-pole, 50 Hz, star-connected slip-ring in...

A 3-phase, 415 V, 6-pole, 50 Hz, star-connected slip-ring induction motor has a total stator and rotor reactance of 1.5 \Omega referred to the stator. The machine drives pure inertia load; the moment of inertia of the rotor and load being 11 kg m^{2}. Direct on-line starting is used and the rotor circuit resistance is adjusted so that the load is brought to 0.96 of the synchronous speed from rest in shortest possible time. Neglecting stator losses, compute the acceleration time and the value of the rotor resistance referred to the stator.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

s = 1 – 0.96 = 0.04

Substituting in Eq. (9.101)  \left(s_{\max , T}\right)_{ opt }=\sqrt{\frac{\left(s_{1}-s_{2}\right)^{2}}{2 \ln \left(s_{1} / s_{2}\right)}}

 

\left(s_{\max , T}\right)_{ opt }=\left[\frac{1-(0.04)^{2}}{2 \ln (1 / 0.04)}\right]^{1 / 2}

= 0.394

From Eqs (9.105)  \left(R_{2}^{\prime}\right)_{ opt } =\left(X_{1}+X_{2}^{\prime}\right)\left(s_{\max , T}\right)_{ opt }

and (9.103)  t_{A}(\min )=\frac{J \omega_{s}}{2 T_{\max }}\left[\frac{1-s^{2}}{2\left(s_{\max , T}\right)_{ opt }}+\left(s_{\max , T}\right)_{ opt } \ln \frac{1}{s}\right]

 

\left(R_{2}^{\prime}\right)_{ opt }=1.5 \times 0.394=0.591 \Omega

 

t_{A}(\min )=\frac{J \omega_{s}}{2 T_{\max }}\left[\frac{1-s^{2}}{2\left(s_{\max , T}\right)_{ opt }}+\left(s_{\max , T}\right)_{ opt } \ln \frac{1}{s}\right]

 

From Eq. (9.94) T_{\max }=\frac{3}{\omega_{s}} \cdot \frac{0.5 V_{T H}^{2}}{\left(X_{1}+X_{2}^{\prime}\right)}  , assuming V_{TH} = V

 

T_{\max }=\frac{3}{2 \pi \times 1000} \cdot \frac{0.5(415 / \sqrt{3})^{2}}{1.5}=548.2

 

=\frac{11(2 \pi \times 1000 / 60)}{2 \times 548.2}\left[\frac{1-(0.04)^{2}}{2 \times 0.394}+0.394 \times \ln \left(\frac{1}{0.04}\right)\right]

= 2.66 s

Related Answered Questions