Question 8.42: A 4-pole, 50 Hz, 22 kV, 500 MV A synchronous generator havin...

A 4-pole, 50 Hz, 22 kV, 500 MV A synchronous generator having a synchronous reactance of 1.57 pu is feeding into a power system, which can be represented by a 22 kV infinite bus in series with a reactance of 0.4 \Omega. The generator excitation is continually adjusted (by means of an automatic voltage regulator) so as to maintain a terminal voltage of 22 kV independent of the load on the generator.

(a) Draw the phasor diagram, when the generator is feeding 250 MVA into the power system. Calculate the generator current, its power factor and real power fed by it. What is the excitation emf of the generator?

(b) Repeat part (a) when the generator load is 500 MVA.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The circuit diagram of the system is drawn in Fig. 8.114(a)

I_{a}(\text { rated })=\frac{500}{\sqrt{3} \times 22}=13.12 kA

 

V_{t}(\text { rated })=22 / \sqrt{3}=12.7 kV

 

Z_{b}=12.7 / 13.12=0.968 \Omega

 

(M V A)_{B}=500,(M W)_{B}=500

 

X_{s g}=1.57 pu (given)

X_{b}=0.4 / 0.968=0.413 pu

(a)                                           Load = 250 MVA or 0.5 pu

V_{t}=1 pu , \quad I_{a}=0.5 pu

 

V_{b}=1 pu

 

X_{b} I_{a}=0.413 \times 0.5=0.207 pu

The phasor diagram is drawn in Fig. 8.114(b)

\sin \phi=\frac{(0.207 / 2)}{1} \text { as } \bar{I}_{a} \text { is at } 90^{\circ} \text { to } \bar{I}_{a} X_{b}

Or                                              \phi=5.9^{\circ}

p f=\cos \phi=0.995  lagging

P_{e}=0.5 \times 0.995=0.4975 pu \Rightarrow 124.4 MW

 

\bar{E}_{g}=1 \angle 0^{\circ}+j 1.57 \times 0.5 \angle-5.9^{\circ}=1.333 \angle 35.9^{\circ}

Or                                        E_{g}=1.333 \times 22=29.32 kV (line)

(b)                                           MVA load = 1 pu,   I_{a}=1 pu

X_{b} I_{a}=0.413 \times 1=0.413 pu

 

\sin \phi=\frac{(0.143 / 2)}{1} \Rightarrow \phi=11.9^{\circ}

 

\cos \phi=0.98  lagging

P_{e}=1 \times 1 \times 0.98=0.98 pu  or 490 MW

 

\bar{E}_{g}=1 \angle 0^{\circ}+j 1.57 \times 1 \angle-11.9^{\circ}=1.324+j 1.536

Or                         E_{g}=2.028 pu  or  44.62 kV (line)

8 42

Related Answered Questions