Question 8.46: A 440 V, 50 Hz, Δ -connected synchronous generator has a dir...

A 440 V, 50 Hz, \Delta-connected synchronous generator has a direct-axis reactance of 0.12 \Omega and a quadrature-axis reactance of 0.075 \Omega / \text { phase } ; the armature resistance being negligible. The generator is supplying 1000 A at 0.8 lagging pf. (a) Find the excitation emf neglecting saliency and assuming X_{s} = X_{d}.

(b) Find the excitation emf accounting for saliency.

Compare and comment on the results of parts (a) and (b).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

On equivalent star basis

X_{d}=0.12 / 3=0.04 \Omega, \quad X_{q}=0.075 / 3=0.025 \Omega

(a) Saliency ignores;               X_{s}=X_{d}

 

\bar{E}_{f}=(440 / \sqrt{3}) \angle 0^{\circ}+j 0.04 \times 1000 \angle-36.9^{\circ}

 

=279.8 \angle 6.6^{\circ}

 

Or                                                    E_{f}=279.8 V  or   484.6 V (line)

(b)                                            I_{a}=1000 A , \phi=+36.90^{\circ} (lagging)

\tan \psi=\frac{V_{t} \sin \phi+I_{a} X_{q}}{V_{t} \cos \phi+I_{a} R_{a}}

 

=\frac{254 \times 0.6+1000 \times 0.025}{254 \times 0.8} ; V_{t}=440 / \sqrt{3}=254 V

= 0.873

Or                                       \psi=41.1^{\circ}

 

\delta=\psi-\phi=41.1^{\circ}-36.9^{\circ}=4.2^{\circ}

 

E_{f}=V_{t} \cos \delta+I_{d} X_{d} ; \quad I_{d}=I_{d} \sin \psi=1000 \sin 4.2^{\circ}

 

=254 \cos 4.2^{\circ}+73.2 \times 0.04

 

= 256.3 V or 444 V (line)

Related Answered Questions