Question 9.17: A 50 Hz, 3-phase induction motor has a rated voltage V1. The...

A 50 Hz, 3-phase induction motor has a rated voltage V_{1}. The motor’s breakdown torque at rated voltage and frequency occurs at a slip of 0.2. The motor is instead run from a 60 Hz supply of voltage V_{2}. The stator impedance can be neglected.

(a) If V_{2}=V_{1}, find the ratio of currents and torques at starting. Also find the ratio of maximum torques.

(b) Find the ratio V2 /V1 such that the motor has the same values of starting current and torque at 50 and 60 Hz.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)                                   s_{\max , T}=\frac{R_{2}^{\prime}}{X_{2}^{\prime}}=0.2

Where  X_{2}^{\prime}= = standstill 50 Hz rotor reactance

At rated voltage ( V_{1} ) and frequency (50 Hz)

I_{s}(1)=I_{2}^{\prime}(1)=\frac{V_{1}}{\sqrt{R_{2}^{\prime 2}+X_{2}^{\prime 2}}}                                   (i)

T_{s}(1)=\frac{V_{1}^{2} R_{2}^{\prime}}{R_{2}^{\prime 2}+X_{2}^{\prime 2}}                                    (ii)

T_{\max }(1)=\frac{3}{\omega_{s}} \cdot \frac{0.5 V_{1}^{2}}{X_{2}^{\prime}}                                            (iii)

At voltage V_{2}  and frequency 60 Hz

I_{2}(2)=I_{2}^{\prime}(2)=\frac{V_{2}}{\sqrt{R_{2}^{\prime 2}+\left(\frac{6}{5}\right)^{2} X_{2}^{\prime 2}}}                                              (iv)

T_{s}(2)=\frac{V_{2}^{2} R_{2}^{\prime}}{R_{2}^{\prime 2}+\left(\frac{6}{5}\right)^{2} X_{2}^{\prime 2}}                                              (v)

T_{\max }(2)=\frac{3}{\left(\frac{6}{5}\right) \omega_{s}} \frac{0.5 V_{2}^{2}}{\left(\frac{6}{5}\right) X_{2}^{\prime}}                                                    (vi)

Dividing Eqs (iv), (v) and (vi) respectively by Eqs (i), (ii) and (iii)

\frac{I_{s}(2)}{I_{s}(1)}=\frac{V_{2}}{V_{1}} \cdot \sqrt{\frac{R_{2}^{\prime 2}+X_{2}^{\prime 2}}{R_{2}^{\prime 2}+\left(\frac{6}{5}\right)^{2} X_{2}^{\prime 2}}}

 

=\frac{V_{2}}{V_{1}} \cdot \sqrt{\frac{s_{\max , T}^{2}+1}{s_{\max , T}^{2}+\left(\frac{6}{5}\right)^{2}}}

 

=1 \times \sqrt{\frac{(0.2)^{2}+1}{(0.2)^{2}+\left(\frac{6}{5}\right)^{2}}}=0.838

 

\frac{T_{s}(2)}{T_{s}(1)}=\frac{V_{2}^{2}}{V_{1}^{2}} \cdot \frac{s_{\max , T}^{2}+1}{s_{\max , T}^{2}+\left(\frac{6}{5}\right)^{2}}

 

=1 \times \frac{(0.2)^{2}+1}{(0.2)^{2}+\left(\frac{6}{5}\right)^{2}}=0.703

 

\frac{T_{\max }(2)}{T_{\max }(1)}=\frac{V_{2}^{2}}{V_{1}^{2}}\left(\frac{5}{6}\right)^{2}=0.694

 

(b)                                      \frac{V_{2}^{2}}{V_{1}^{2}} \cdot \sqrt{\frac{(0.2)^{2}+1}{(0.2)^{2}+\left(\frac{6}{5}\right)^{2}}}=1

 

\frac{V_{2}}{V_{1}}=1.19

This ratio will also give equal staring torques.

Related Answered Questions