Question 8.45: A 6.6 kV, Y-connected, 3-phase, synchronous motor operates a...

A 6.6 kV, Y-connected, 3-phase, synchronous motor operates at constant voltage and excitation. Its synchronous impedance is 2+j 20 \Omega \text { /phase } . The motor operates at 0.8 leading power factor while drawing 800 kW from the mains. Find the motor power factor when it is loaded to draw increased power of 1200 kW

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\bar{V}_{t}=6.6 / \sqrt{3} \quad \angle 0^{\circ}=3.81 \angle 0^{\circ} kV

 

\bar{I}_{a}=I_{a} \angle 36.9^{\circ}

 

I_{a}=\frac{800}{\sqrt{3} \times 6.6 \times 0.8}=87.5 A

 

\bar{Z}_{s}=2+j 20=20.1 \angle 84.3^{\circ} \Omega, \cos 84.3^{\circ}=0.1

 

\bar{E}_{f}=3.81-20.1 \angle 84.3^{\circ} \times 0.0875 \angle 36.9^{\circ}=4.724-j 1.504

Or                       E_{f}=4.96 kV (phase)

Power input increases to 1200 kW; no change in excitation

\bar{I}_{a}=\frac{V_{t} \angle 0^{\circ}-E_{f} \angle-\delta}{Z_{s} \angle \theta}=\frac{V_{t}}{Z_{s}} \angle-\theta-\frac{E_{f}}{Z_{s}} \angle-(\delta+\theta)

 

P_{e}(\text { in })=3 \operatorname{Re}\left[V_{t} \angle 0^{\circ} \bar{I}_{a}^{*}\right]

 

=3\left[\frac{V_{t}^{2}}{Z_{s}} \cos \theta-\frac{V_{t} E_{f}}{Z_{s}} \cos (\delta+\theta)\right]

Substituting values

\frac{1200}{1000 \times 3}=\frac{(3.81)^{2} \times 0.1}{20.1}-\frac{3.81 \times 4.96}{20.1} \cos \left(\delta+84.3^{\circ}\right)

Solving we get

\delta=26.1^{\circ}

 

\bar{I}_{a}=\frac{3.81-4.96 \angle-26.1^{\circ}}{20.1 \angle 84.3}=113 \angle 22.1^{\circ}

 

p f=\cos 22.1^{\circ}=0.9265 leading

Related Answered Questions