a. Since the 1 kΩ resistor has the largest resistance and therefore the largest opposition to the flow of charge (level of conductivity), it will have the lowest level of conductance:
G_1=\frac{1}{R_1}=\frac{1}{2\Omega }=0.5S,\, G_2=\frac{1}{R_2}=\frac{1}{200\Omega }=0.005S=5mS\\[0.5cm] G_3=\frac{1}{R_3}=\frac{1}{1k\Omega }=\frac{1}{1000\Omega }=0.001S=1mS\\[0.5cm] G_T=G_1+G_2+G_3=0.5S+5mS+1mS\\[0.5cm] =506mS
Note the difference in conductance level between the 2 Ω (500 mS) and the 1 kΩ (1 mS) resistor.
b. R_T=\frac{1}{G_T}=\frac{1}{506mS}=1.976\Omega
Applying Eq. (6.3) gives
R_T= \frac{1}{\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3} }=\frac{1}{\frac{1}{2\Omega }+\frac{1}{200\Omega }+\frac{1}{1k\Omega } }\\[0.5cm] =\frac{1}{0.5S+0.005S+0.001S}=\frac{1}{0.506S} =1.98\Omega