Question 9.12: A small squirrel-cage induction motor has a starting current...

A small squirrel-cage induction motor has a starting current of six times the full-load current and a full-load slip of 0.05. Find in pu of full-load values, the current (line) and starting torque with the following methods of starting ((a) to (d)).

(a) direct switching.

(b) stator-resistance starting with motor current limited to 2 pu,

(c) autotransformer starting with motor current limited to 2 pu, and

(d) star-delta starting.

(e) what autotransformer ratio would give 1 pu starting torque?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Direct switching

I_{s}=6 pu

 

T_{s}=(6)^{2} \times 0.05=1.8

 

(b) Stator-resistance starting

I_{s}=2 pu (limited to)

T_{s}=(2)^{2} \times 0.05=0.2 pu   (Eq. (9.60)

\frac{T_{s}}{T_{f l}}=\left(\frac{I_{s}}{I_{f l}}\right)^{2} s_{f l}        (9.60)

 

(c) Autotransformer starting

x = 2/6 = 1/3

I_{s}(\text { motor })=2 pu

 

I_{s}(\text { line })=\frac{1}{3} \times 2 pu =0.67 pu

 

T_{s}=(2)^{2} \times 0.05=0.2 pu     (Eq. (9.60))

 

(d) Star-delta starting

I_{s}=\frac{1}{3} \times 6=2 pu    (Eq. (9.68)

\frac{I_{s}(\text { star })}{I_{s}(\text { delta })}=\frac{1}{3}     (9.68)

T_{s}=\frac{1}{3} \times(6)^{2} \times 0.05=0.6 pu   (Eq. (9.69)

\frac{T_{s}(\operatorname{star})}{T_{f l}}=\frac{1}{3}\left(\frac{I_{S C}}{I_{f l}}\right)^{2} s_{f l}      (9.69)

 

(e) Autotransformer starting

T_{s}=x^{2}(6)^{2} \times 0.05=1.0 pu  (Eq. (9.64))

\frac{T_{s}}{T_{f l}}=x^{2}\left(\frac{I_{S C}}{I_{f l}}\right)^{2} s_{f l}          (9.64)

 

x=0.745(\approx 75 \% \text { tap })

Related Answered Questions