Question A3.1: Determine the centroid (x,y) for the triangle shown in Fig...

Determine the centroid (\overline{x},\overline{y} ) for the triangle shown in Fig. 3.23.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Although there are multiple ways to perform the requisite integration, let us first do so with a differential area dA=dxdy noting that y=(h/b)x (i.e., the slope, or rise over run, is h/b and the intercept is zero). Hence, FIGURE 3.23 Determine a general formula for the first moment of area for this triangular cross section.

                A=\int_{0}^{b}{\left(\int_{0}^{hx/b}{dy} \right)dx }=\int_{0}^{b}{\frac{hx}{b} }dx=\frac{h}{b}\left(\frac{x^{2}}{2}\mid^{b}_{0} \right)=\frac{1}{2}bh,

as expected. Similarly,

                      \iint{xdA}=\int_{0}^{b}{x\left(\int_{0}^{hx/b}{dy} \right)dx }=\int_{0}^{b}{\frac{hx^{2}}{b} }dx=\frac{h}{b}\left(\frac{b^{3}}{3} \right)=\frac{1}{3}b^{2}h

and

                          \iint{ydA}=\int_{0}^{b}{\left(\int_{0}^{hx/b}{ydy} \right)dx }=\int_{0}^{b}{\frac{1}{2}\left(\frac{h^{2}x^{2}}{b^{2}} \right)dx }=\frac{1}{2}\frac{h^{2}}{b^{2}}\left(\frac{b^{3}}{3} \right)=\frac{1}{6}bh^{2}.

Consequently,

                         \overline{x}=\frac{\iint{xdA} }{\iint{dA} }=\frac{\frac{1}{3}b^{2}h }{\frac{1}{2}bh }=\frac{2}{3}b,      \overline{y}=\frac{\iint{ydA} }{\iint{dA} }=\frac{\frac{1}{6}bh^{2} }{\frac{1}{2}bh }=\frac{1}{3}h,

as expected. Show that the same result is obtained by considering a differential area dA=ydx=(h/b)x dx.

Related Answered Questions