Determine the deflection at point B of the beam shown in Fig. 7.15(\mathrm{a}) by the virtual work method. Use the graphical procedure (Table 7.6) to evaluate the virtual work integral.
Table 7.6 Integrals \int_{0}^{L} M_{v} M d x for Moment Diagrams of Simple Geometric Shapes | ||||
M_{v}
M |
![]() |
![]() |
![]() |
![]() |
![]() |
M_{v1}M_{1}L | \frac{1}{2} M_{v1}M_{1}L | \frac{1}{2}\left(M_{v1}+M_{v2} \right) M_{1}L | \frac{1}{2}M_{v1} M_{1}L |
![]() |
\frac{1}{2} M_{v1}M_{1}L | \frac{1}{3} M_{v1}M_{1}L | \frac{1}{6}\left(M_{v1}+2M_{v2} \right) M_{1}L | \frac{1}{6}M_{v1} M_{1}\left(L+l_{1} \right) |
![]() |
\frac{1}{2} M_{v1}M_{1}L | \frac{1}{6} M_{v1}M_{1}L | \frac{1}{6}\left(2M_{v1}+M_{v2} \right) M_{1}L | \frac{1}{6}M_{v1} M_{1}\left(L+l_{2} \right) |
![]() |
\frac{1}{2}M_{v1}\left(M_{1}+M_{2} \right) L | \frac{1}{6}M_{v1}\left(M_{1}+2M_{2} \right) L | \frac{1}{6}\left[M_{v1}\left(2M_{1}+M_{2} \right)+M_{v2}\left(M_{1}+2M_{2} \right) \right]L | \frac{1}{6}M_{v1}\left[M_{1}\left(L+l_{2} \right)+M_{2}\left(L+l_{1} \right) \right] |
![]() |
\frac{2}{3} M_{v1}M_{1}L | \frac{1}{3} M_{v1}M_{1}L | \frac{1}{3}\left(M_{v1}+M_{v2} \right) M_{1} L | \frac{1}{3}M_{v1} M_{1} \left\lgroup L+\frac{l_{1}l_{2} }{L} \right\rgroup |
![]() |
\frac{2}{3} M_{v1}M_{1}L | \frac{5}{12} M_{v1}M_{1}L | \frac{1}{12}\left(3M_{v1}+5M_{v2} \right) M_{1} L | \frac{1}{12}M_{v1} M_{1} \left\lgroup3L+3l_{1}-\frac{l^{2}_{1} }{L} \right\rgroup |
![]() |
\frac{1}{3} M_{v1}M_{1}L | \frac{1}{4} M_{v1}M_{1}L | \frac{1}{12}\left(M_{v1}+3M_{v2} \right) M_{1} L | \frac{1}{12}M_{v1} M_{1} \left\lgroup L+l_{1}+\frac{l^{2}_{1} }{L} \right\rgroup |