Products
Rewards 
from HOLOOLY

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

HOLOOLY 
BUSINESS MANAGER

Advertise your business, and reach millions of students around the world.

HOLOOLY 
TABLES

All the data tables that you may search for.

HOLOOLY 
ARABIA

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

HOLOOLY 
TEXTBOOKS

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

HOLOOLY 
HELP DESK

Need Help? We got you covered.

Chapter 7

Q. 7.13

Determine the horizontal deflection at joint C of the frame shown in Fig. 7.18(\mathrm{a}) including the effect of axial deformations, by the virtual work method.

Table 7.11
x Coordinate
Segment Origin Limits (ft) M (k-ft) F(k) M_{v} \left(k-ft\right) F_{v} \left(k\right)
AB A 0-15 -1.67x -12.50 \frac{x}{2} \frac{3}{4}
BC B 0-20 -25+ 12.5x-{x^{2} } -11.67 7.5-\frac{3}{4} x \frac{1}{2}
DC D 0-15 11.67x -27.50 \frac{x}{2} -\frac{3}{4}

Step-by-Step

Verified Solution

The real and virtual systems are shown in Fig. 7.18(b) and (c), respectively. The x coordinates used for determining the bending moment equations for the three members of the frame, A B, B C, and C D, are also shown in the figures. The equations for M and M_{v} obtained for the three members are tabulated in Table 7.11 along with the axial forces F and F_{v} of the members. The horizontal deflection at joint C of the frame can be determined by applying the virtual work expression given by Eq. (7.35):

\begin{aligned} 1\left(\Delta\right)=& \sum F_{v}\left(\frac{F L}{A E}\right)+\sum \int \frac{M_{v} M}{E I} d x \end{aligned}      (7.35)

\begin{aligned} 1\left(\Delta_{C}\right)=& \sum F_{v}\left(\frac{F L}{A E}\right)+\sum \int \frac{M_{v} M}{E I} d x \\ 1\left(\Delta_{C}\right)=& \frac{1}{A E}\left[\frac{3}{4}(-12.5)(15)+\frac{1}{2}(-11.67)(20)-\frac{3}{4}(-27.5)(15)\right] \\ &+\frac{1}{E I}\left[\int_{0}^{15} \frac{x}{2}(-1.67 x) d x\right.\\ &\left.+\int_{0}^{20}\left(7.5-\frac{3}{4} x\right)\left(-25+12.5 x-x^{2}\right) d x+\int_{0}^{15} \frac{x}{2}(11.67 x) d x\right] \\ (1  \mathrm{k}) \Delta_{C}=& \frac{52.08  \mathrm{k}^{2}-\mathrm{ft}}{A E}+\frac{9,375  \mathrm{k}^{2}-\mathrm{ft}^{3}}{E I} \end{aligned}

Therefore,

\begin{aligned} \Delta_{C} &=\frac{52.08  \mathrm{k}-\mathrm{ft}}{A E}+\frac{9,375  \mathrm{k}-\mathrm{ft}^{3}}{E I} \\ &=\frac{52.08}{(35)(29,000)}+\frac{9,375(12)^{2}}{(29,000)(1,000)} \\ &=0.00005+0.04655 \\ &=0.0466  \mathrm{ft}=0.559  \mathrm{in} \\ \Delta_{C} &=0.559  \mathrm{in} . \rightarrow \end{aligned}

Note that the magnitude of the axial deformation term is negligibly small as compared to that of the bending deformation term.