Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown in Fig. 16.6(a) by the slope-deflection method.
Chapter 16
Q. 16.2

Step-by-Step
Verified Solution
Degrees of Freedom \theta_B and \theta_C.
Fixed-End Moments
FEM_{AB} = \frac{3(18)^2}{30}= 32.4 k-ft \circlearrowleft or +32.4 k-ft
FEM_{BA} = \frac{3(18)^2}{20}= 48.6 k-ft \circlearrowright or -48.6 k-ft
FEM_{BC} = \frac{3(18)^2}{12}= 81 k-ft \circlearrowleft or -81 k-ft
FEM_{CB} = 81 k-ft \circlearrowright or +81 k-ft
FEM_{CD} = \frac{3(18)^2}{20}= 48.6 k-ft \circlearrowleft or +48.6 k-ft
FEM_{DC} = \frac{3(18)^2}{30}= 32.4 k-ft \circlearrowright or -32.4 k-ft
Slope-Deflection Equations Using Eq. (M_{nf}=\frac{2EI}{L}(2\theta_n + \theta_f – 3\psi) + FEM_{nf}) for members AB, BC, and CD, we write
M_{AB}=\frac{2EI}{18}(\theta_B) + 32.4 = 0.111EI \theta_B + 32.4 (1)
M_{BA}=\frac{2EI}{18}(2\theta_B) – 48.6 = 0.222EI \theta_B – 48.6 (2)
M_{BC}=\frac{2EI}{18}(2\theta_B+\theta_C) + 81 = 0.222EI \theta_B +0.111EI \theta_C + 81 (3)
M_{CB}=\frac{2EI}{18}(\theta_B+2\theta_C) – 81 = 0.111EI \theta_B +0.222EI \theta_C – 81 (4)
M_{CD}=\frac{2EI}{18}(2\theta_C) + 48.6 = 0.222EI \theta_C + 48.6 (5)
M_{AB}=\frac{2EI}{18}(\theta_C) – 32.4 = 0.111EI \theta_C – 32.4 (6)
Equilibrium Equations See Fig. 16.6(b).
M_{BA} + M_{BC} = 0 (7)
M_{CB} + M_{CD} = 0 (8)
Joint Rotations By substituting the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations (Eqs. (7) and (8)), we obtain
0.444EI\theta_B + 0.111EI\theta_C = -32.4 (9)
0.111EI\theta_B + 0.444EI\theta_C = 32.4 (10)
By solving Eqs. (9) and (10) simultaneously, we determine the values of EI\theta_B and EI\theta_C to be
EI\theta_B = -97.3 k-ft^2EI\theta_C = 97.3 k-ft^2
Member End Moments To compute the member end moments, we substitute the numerical values of EI\theta_B and EI\theta_C back into the slope-deflection equations (Eqs. (1) through (6)) to obtain
M_{AB} = 0.111(-97.3) + 32.4 = 21.6 k-ft \circlearrowleft Ans.
M_{BA} = 0.222(-97.3) – 48.6 = -70.2 k-ft or 70.2 k-ft \circlearrowright Ans.
M_{BC} = 0.222(-97.3) + 0.111(97.3) + 81 = 70.2 k-ft \circlearrowleft Ans.
M_{CB} = 0.111(-97.3) + 0.222(97.3) – 81
= -70.2 k-ft or 70.2 k-ft \circlearrowright Ans.
M_{CD} = 0.222(97.3) + 48.6 = 70.2 k-ft \circlearrowleft Ans.
M_{DC} = 0.111(97.3) – 32.4 = -21.6 k-ft or 21.6 k-ft \circlearrowright Ans.
Note that the numerical values of M_{BA} , M_{BC} , M_{CB}, and M_{CD} do satisfy the equilibrium equations (Eqs. (7) and (8)).
Member End Shears and Support Reactions See Fig. 16.6(c) and (d). Ans.
Equilibrium Check The equilibrium equations check.
Shear and Bending Moment Diagrams See Fig. 16.6(e) and (f ). Ans.



