Find the centroid, relative to x and y, for the cross section shown in Fig. 3.25.
Find the centroid, relative to x and y, for the cross section shown in Fig. 3.25.
It is easiest to formulate these solutions in tabular form. Hence, note that
\overline{y}_{i}A_{i} | \overline{x}_{i}A_{i} | Area | |
13(120) | 10(120) | 20(6)=120 | Part 1 |
5(20) | 10(20) | 2(10)=20 | Part 2 |
Therefore,FIGURE 3.25 Compute the first moment of area of this composite section.
\overline{x}=\frac{\sum{\overline{x}_{i}A_{i} } }{\sum{A_{i}} }=\frac{10(120)+10(20)}{120+20}=10,\overline{y}=\frac{\sum{\overline{y}_{i}A_{i} } }{\sum{A_{i}} }=\frac{13(120)+5(20)}{120+20}=11.86
Note, too, that we could obtain the same result by computing values for a rectangular area 20\times 16 and then subtracting out small rectangular areas to yield the T-shape, namely
\overline{y}_{i}A_{i} | \overline{x}_{i}A_{i} | Area | |
8(320) | 10(320) | 20(16)=320 | Part 1 |
5(90) | 4.5(90) | 9(10)=90 | Part 2 |
5(90) | 15.5(90) | 9(10)=90 | Part 3 |
whereby
\overline{x}=\frac{\sum{\overline{x}_{i}A_{i} } }{\sum{A_{i}} }=\frac{10(320)-4.5(90)-15.5(90)}{320-90-90}=10,\overline{y}=\frac{\sum{\overline{y}_{i}A_{i} } }{\sum{A_{i}} }=\frac{8(320)-5(90)-5(90)}{320-90-90}=11.86.
which is the same as found above.