Given the information provided in Fig. 6.24:
a. Determine R_3.
b. Find the applied voltage E.
c. Find the source current I_s.
d. Find I_2.
Chapter 6
Q. 6.14

Step-by-Step
Verified Solution
a. Applying Eq. (6.1) gives
\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+\cdot \cdot \cdot +\frac{1}{R_N} (6.1)
\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}
Substituting gives \frac{1}{4\Omega }=\frac{1}{10\Omega }+\frac{1}{20\Omega }+\frac{1}{R_3}+\cdot \cdot \cdot +\frac{1}{R_N}
so that 0.25S=0.1S+0.05S+\frac{1}{R_3}
and 0.25S=0.15S+\frac{1}{R_3}
with \frac{1}{R_3}=0.1S
and R_3=\frac{1}{0.1S}=10\Omega
b. Using Ohm’s law gives
E=V_1=I_1R_1=(4A)(10\Omega )=40V
c. I_s=\frac{E}{R_T}=\frac{40V}{4\Omega }=10A
d. Applying Ohm’s law gives
I_2=\frac{V_2}{R_2}=\frac{E}{R_2}=\frac{40V}{20\Omega }=2A