Question 3.8: Imagine a system in which there are just two linearly indepe...

Imagine a system in which there are just two linearly independent states:

1=(10)|1〉=\begin{pmatrix} 1 \\ 0\end{pmatrix} and 2=(01)|2〉=\begin{pmatrix} 0\\ 1 \end {pmatrix}

The most general state is a normalized linear combination:

S=a1+b2=(ab)|S〉= a|1〉+b|2〉=\begin{pmatrix} a \\ b\end{pmatrix} with a2+b2=1\left|a\right| ^{2}+ \left |b\right|^{2}=1

The Hamiltonian can be expressed as a (hermitian) matrix (Equation 3.83 [emQ^en=Qmn][〈e_{m}|\hat{Q}|e_{n}〉=Q_{mn}]); suppose it has the specific form

H=(hggh)H=\begin{pmatrix} h & g \\ g & h\end{pmatrix}

where g and h are real constants. If the system starts out (at t=0 ) in state |1〉, what is its state at time t?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The (time-dependent) Schrödinger equation says

iddtS(t)=H^S(t)i\hbar \frac{d}{dt}|S(t)〉 =\hat{H} |S(t)〉      (3.87)

As always, we begin by solving the time-independent Schrödinger equation:

H^s=Es\hat{H}|s〉=E|s〉        (3.88)

that is, we look for the eigenvectors and eigenvalues of H^\hat{H} .The characteristic equation determines the eigenvalues:

det(hEgghE)=(hE)2g2=0hE=gE±=h±gdet \begin{pmatrix} h-E & g \\ g & h-E \end {pmatrix}=(h-E)^{2}-g^{2}=0\Rightarrow h-E=\mp g\Rightarrow E_{\pm }=h\pm g

Evidently the allowed energies are  (h + g ) and (h – g) . To determine the eigenvectors, we write

(hggh)(αβ)=(h±g)(αβ)hα+gβ=(h±g)αβ=±α\begin{pmatrix} h & g \\ g & h\end{pmatrix} \begin {pmatrix} \alpha \\ \beta \end{pmatrix}=(h\pm g) \begin {pmatrix} \alpha \\ \beta \end{pmatrix} \Rightarrow h\alpha +g\beta =(h\pm g)\alpha \Rightarrow \beta =\pm \alpha

so the normalized eigenvectors are

s±=12(1±1)|s_{\pm }〉 =\frac{1}{\sqrt{2} }\begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}

Next we expand the initial state as a linear combination of eigenvectors of the Hamiltonian:

S(0)=(10)12(s++s)|S(0)〉= \begin{pmatrix} 1 \\0 \end {pmatrix} \frac{1}{\sqrt{2} }(|s_{+}〉 +|s_{-}〉 )

Finally, we tack on the standard time-dependence (the wiggle factor) exp(iEnt/)exp(-iE_nt/ \hbar) :

S(t)=12[ei(h+g)t/s++ei(hg)t/s]|S(t)〉= \frac{1}{\sqrt{2}}\left[e^{-i(h+g)t/\hbar }|s_{+}〉 +e^{-i(h-g)t/\hbar }|s_{-}〉\right]
=12eiht/[eigt/(11)+eigt/(11)] =\frac{1}{2} e^{-iht/\hbar}\left[e^{-igt/\hbar }\begin{pmatrix}1 \\ 1 \end{pmatrix} +e^{igt/\hbar }\begin{pmatrix}1 \\ -1 \end{pmatrix}\right]
=12eiht/(eigt/+eigt/eigt/eigt/)=\frac{1}{2} e^{-iht/\hbar}\begin{pmatrix}e^{-igt/\hbar}+e^{igt/\hbar} \\ e^{-igt/\hbar}-e^{igt/ \hbar} \end{pmatrix}
=eiht/(cos(gt/)isin(gt/))e^{-iht/\hbar}\begin{pmatrix}\cos (gt/\hbar ) \\ -i\sin(gt/\hbar ) \end{pmatrix}

If you doubt this result, by all means check it: Does it satisfy the time-dependent Schrödinger equation (Equation 3.87)? Does it match the initial state when t=0 ?

 

Related Answered Questions