Products
Rewards 
from HOLOOLY

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

HOLOOLY 
BUSINESS MANAGER

Advertise your business, and reach millions of students around the world.

HOLOOLY 
TABLES

All the data tables that you may search for.

HOLOOLY 
ARABIA

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

HOLOOLY 
TEXTBOOKS

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

HOLOOLY 
HELP DESK

Need Help? We got you covered.

Chapter 3

Q. 3.3

In a parallel plate diode, anode is made 350 V positive with respect to the cathode and is 6 mm from it. An electron is emitted from the cathode with an initial velocity of 3 × 10^{6} m/s in the direction of the anode. Calculate the velocity and the time of travel of the electron (i) when it is midway between cathode and anode, and (ii) on reaching the anode.

Step-by-Step

Verified Solution

Given           V = 350 V, d = 6 mm, v_{ox} = 3 × 10^{6} m/s

Therefore,           E = V/d = 350/(6 × 10^{–3}) = 58.33 × 10^{3} V/m

a_{x} = qE/m = 1.026 × 10^{16} m/s^{2}

We know that,

x = v_{ox}t + 0.5 at^{2}

v_{x} = v_{ox} + a_{x}t

(i) Consider x = 3 × 10^{–3} m

3 × 10^{–3} = 3 × 10^{6}t + 5.13 × 10^{15} t^{2}

t^{2} + 5.85 × 10^{–10} t – 5.85 × 10^{–19} = 0

Solving this equation,

t = 5.26 × 10^{–10} s

Therefore,             v_{x} = v_{ox} + a_{x} t = 3 × 10^{6} + 1.026 × 10^{16} (5.264 × 10^{–10})

= 8.4 × 10^{6} m/s

(ii) Consider x = 6 × 10^{–6} m

t^{2} + 5.85 × 10^{–10} t – 1.17 × 10^{–18} = 0

Solving this equation,         t = 8.28 × 10^{–10} s

Therefore,                              v_{x} = 3 × 10^{6} + 8.28 × 10^{–10} (1.026 × 10^{16}) = 11.5 × 10^{6} m/s