We determine the neutron momentum from the de Broglie wavelength relation with \lambda=0.060 nm.
p=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} J \cdot s }{0.060 \times 10^{-9} m }=1.1 \times 10^{-23} kg \cdot m / s
Because we expect the kinetic energy to be low, we use a nonrelativistic relation to determine the kinetic energy.
\begin{aligned}K &=\frac{p^{2}}{2 m}=\frac{\left(1.1 \times 10^{-23} kg \cdot m / s \right)^{2}}{2\left(1.67 \times 10^{-27} kg \right)}=3.6 \times 10^{-20} J \\&=0.23 eV\end{aligned}
Thus we see that the nonrelativistic relation is certainly adequate here. In thermal equilibrium, the temperature is found from K=\frac{3}{2} k T.
T=\frac{2 K}{3 k}=\frac{2\left(3.6 \times 10^{-20} J \right)}{3\left(1.38 \times 10^{-23} J / K \right)}=1740 K
Such energy is easily obtained by thermalizing neutrons from a nuclear reactor.