Question A3.2: Show that the centroid (x,y) for the circular region shown i...

Show that the centroid (\overline{x},\overline{y}) for the circular region shown in Fig. 3.24 is (0, 0).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Knowing that x^{2}+y^{2}=a^{2},  or  y=\sqrt{a^{2}-x^{2}}, we can compute

FIGURE 3.24 Determine the first moment of area for this circular cross section relative to two different coordinate systems.

                                 A=\int_{-a}^{a}{\left(\int_{-\sqrt{a^{2}-x^{2}} }^{\sqrt{a^{2}-x^{2}} }{dy} \right)dx }=2\left(\frac{1}{2}a^{2} \right)\left(\frac{\pi }{2}-\frac{-\pi }{2} \right)=\pi a^{2}.

Note from integral tables that

                                    \int{\sqrt{a^{2}-x^{2}} }dx=\frac{x}{2}\sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}\sin ^{-1}\left(\frac{x}{\left|a\right| } \right).

Alternatively, knowing that x=r\cos \theta and y=r\sin \theta, we can compute

                                               A=\int_{0}^{a}{\left(\int_{0}^{2\pi }{rd\theta } \right)dr }=2\pi \left(\frac{r^{2}}{2}\mid ^{a}_{0} \right)=\pi a^{2}.

Likewise, we can compute the centroid (\overline{x},\overline{y}) in either Cartesian or cylindrical coordinates. In cylindricals,

\iint{xdA}=\int_{0}^{a}{\left(\int_{0}^{2\pi }{r\cos \theta rd\theta } \right)dr }=\int_{0}^{a}{r^{2}dr}\int_{0}^{2\pi }{\cos \theta d\theta }=\left(\frac{a^{3}}{3} \right)(\sin 2\pi -\sin 0)=0

and, similarly,

\iint{ydA}=\int_{0}^{a}{\left(\int_{0}^{2\pi }{r\sin \theta rd\theta } \right)dr }=\int_{0}^{a}{r^{2}dr}\int_{0}^{2\pi }{\sin \theta d\theta }=\left(\frac{a^{3}}{3} \right)(-\cos 2\pi -\cos 0)=0;

therefore,

                                    \overline{x}=0,     \overline{y}=0,

as expected. Repeat using Cartesians alone.

Related Answered Questions