Show that the centroid (\overline{x},\overline{y}) for the circular region shown in Fig. 3.24 is (0, 0).
Show that the centroid (\overline{x},\overline{y}) for the circular region shown in Fig. 3.24 is (0, 0).
Knowing that x^{2}+y^{2}=a^{2}, or y=\sqrt{a^{2}-x^{2}}, we can compute
FIGURE 3.24 Determine the first moment of area for this circular cross section relative to two different coordinate systems.
A=\int_{-a}^{a}{\left(\int_{-\sqrt{a^{2}-x^{2}} }^{\sqrt{a^{2}-x^{2}} }{dy} \right)dx }=2\left(\frac{1}{2}a^{2} \right)\left(\frac{\pi }{2}-\frac{-\pi }{2} \right)=\pi a^{2}.Note from integral tables that
\int{\sqrt{a^{2}-x^{2}} }dx=\frac{x}{2}\sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}\sin ^{-1}\left(\frac{x}{\left|a\right| } \right).Alternatively, knowing that x=r\cos \theta and y=r\sin \theta, we can compute
A=\int_{0}^{a}{\left(\int_{0}^{2\pi }{rd\theta } \right)dr }=2\pi \left(\frac{r^{2}}{2}\mid ^{a}_{0} \right)=\pi a^{2}.Likewise, we can compute the centroid (\overline{x},\overline{y}) in either Cartesian or cylindrical coordinates. In cylindricals,
\iint{xdA}=\int_{0}^{a}{\left(\int_{0}^{2\pi }{r\cos \theta rd\theta } \right)dr }=\int_{0}^{a}{r^{2}dr}\int_{0}^{2\pi }{\cos \theta d\theta }=\left(\frac{a^{3}}{3} \right)(\sin 2\pi -\sin 0)=0and, similarly,
\iint{ydA}=\int_{0}^{a}{\left(\int_{0}^{2\pi }{r\sin \theta rd\theta } \right)dr }=\int_{0}^{a}{r^{2}dr}\int_{0}^{2\pi }{\sin \theta d\theta }=\left(\frac{a^{3}}{3} \right)(-\cos 2\pi -\cos 0)=0;therefore,
\overline{x}=0, \overline{y}=0,as expected. Repeat using Cartesians alone.