State Equations in Modal Canonical Form
A “quarter car model” [see Eq. (2.12)] with one resonant mode has a transfer function given by
G(s) = \frac{2s + 4}{s^2(s^2 + 2s + 4)} = \frac{1}{s^2} − \frac{1}{s^2 + 2s + 4}. (7.19)
\frac{Y(s)}{R(s)} = \frac{\frac{k_wb}{m_1 m_2}\left(s + \frac{k_s}{b}\right) }{s^4 + \left(\frac{b}{m_1} + \frac{b}{m_2} \right) s^3 + \left(\frac{k_s}{m_1}+\frac{k_s}{m_2}+\frac{k_w}{m_1} \right) s^2 +\left(\frac{k_w b }{m_1 m_2} \right) s+ \frac{k_w k_s }{m_1 m_2} } . (2.12)
Find state matrices in modal form describing this system .