Question 10.6: The circuit model parameters in Ω /phase (referred to stator...

The circuit model parameters in \Omega \text { phase } (referred to stator) of a two-phase, 1 kW, 220 V, 4-pole, 50 Hz squirrel-cage motor are given below:

R_{1}=3 \Omega        \quad R_{2}=2.6 \Omega

 

X_{l}=X_{2}=2.7 \Omega       \quad X=110 \Omega

The windage, friction and core losses equal 200 W.

The applied voltages are adjusted such that

\bar{V}_{a}=110 \angle 90^{\circ}   and \bar{V}_{m}=220 \angle 0^{\circ}

(a) Calculate the starting torque and starting current (in each phase).

(b) Calculate the motor performance at s = 0.04.

(c) With the motor running at s = 0.04, the phase a gets open-circuited. What voltage will be developed across this phase?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eqs (10.38a) \bar{Z}_{11}=\left(\frac{\bar{Z}_{1 m}}{2}+\frac{\bar{Z}_{1 a}}{2 a^{2}}+\bar{Z}_{f}\right)  and (10.38b) \bar{Z}_{12}=\frac{1}{2}\left(\frac{\bar{Z}_{1 a}}{a^{2}}-\bar{Z}_{1 m}\right)  (a = 1)

\bar{V}_{f}=\frac{1}{2}\left(220-j 110 \angle 90^{\circ}\right)=165 V

 

\bar{V}_{b}=\frac{1}{2}\left(220+j 110 \angle 90^{\circ}\right)=55 V

 

(a) s = 1

 

\bar{Z}_{f}=\bar{Z}_{b}=j 110 \|(2.6+j 2.7)

 

=3.66 \angle 47.4^{\circ}=2.48+j 2.69

 

\bar{Z}_{f} \text { (total) }=\bar{Z}_{b} \text { (total) }=(3+j 2.7)+(2.48+j 2.69)

 

=5.48+j 5.39=7.69 \angle 44.5^{\circ}

 

\bar{I}_{f}=\frac{165}{7.69 \angle 44.5^{\circ}}=21.45 \angle-44.5^{\circ}=15.3-j 15.03

 

\bar{I}_{b}=\frac{55}{7.69 \angle 44.5^{\circ}}=7.15 \angle-44.5^{\circ}=5.1-j 5.01

 

\bar{I}_{s}=\frac{2}{157} \times 2.48\left[(21.45)^{2}-(7.15)^{2}\right]

 

= 12.9 Nm

 

\bar{I}_{m}=\bar{I}_{f}+\bar{I}_{b}=20.4-j 20.04=28.6 \angle-44.4^{\circ}

 

I_{m}=28.6 A

 

\bar{I}_{a}=j\left(\bar{I}_{f}-\bar{I}_{b}\right)=10.2+j 10.02=14.3 \angle 44.5^{\circ}

 

I_{a}=14.3 A

 

(b)                                                        \bar{Z}_{f}=j 110 \|\left(\frac{2.6}{0.04}+j 2.7\right)

 

=55.1 \angle 32.4^{\circ}=46.5+j 29.5

 

\bar{Z}_{b}=j 110 \|\left(\frac{2.6}{2-0.04}+j 2.7\right)

 

=2.93 \angle 64.5^{\circ}=1.26+j 2.64

 

\bar{Z}_{f}(\text { total })=(3+j 2.7)+(46.5+j 29.5)

 

=49.5+j 32.2=59 \angle 33^{\circ}

 

\bar{Z}_{b}(\text { total })=(3+j 2.7)+(1.26+j 2.64)

 

=4.26+j 5.34=6.83 \angle 51.4^{\circ}

 

\bar{I}_{f}=\frac{165}{59 \angle 33^{\circ}}=2.79 \angle-33^{\circ}=2.34-j 1.52

 

\bar{I}_{b}=\frac{55}{6.83 \angle 51.4^{\circ}}=8.05 \angle-51.4^{\circ}=5.02-j 6.29

 

n_{s}=1500 rpm    or     \omega_{s}=157.1 rad / s

 

T_{s}=\frac{2}{\omega_{s}}\left(I_{f}^{2} R_{f}-I_{f}^{2} R_{b}\right)

 

=\frac{2}{157.1}\left[(2.79)^{2} \times 46.5-(8.05)^{2} \times 1.26\right]

 

= 3.57 N m

 

\bar{I}_{m}=\bar{I}_{f}+\bar{I}_{b}=(2.34-j 1.52)+(5.02-j 6.29)

 

=7.36-j 7.81=10.73 \angle-46.7^{\circ}

 

\bar{I}_{a}=j\left(\bar{I}_{f}-\bar{I}_{b}\right)=j[(2.34-j 1.52)-(5.02-j 6.29)]

 

=-3.5+j 8.63=-9.31 \angle 112.1^{\circ}

 

I_{m}=10.73 A , l_{a}=9.31 A

 

P_{m}=\omega_{s}(1-s) T=157.1(1-0.04) \times 3.57=538.4 W

 

P_{\text {out }}=538.4-200=338.4 W

 

P_{i n}^{m}=220 \times 10.73 \times \cos 46.7^{\circ}=1619 W

 

P_{i n}^{a}=220 \times 5.47 \times \cos 29.3^{\circ}=1049 W

 

P_{i n}=1619+1049=2668 W

 

\eta=\frac{338.4}{2668}=12.7 \%  (low because of unbalanced operation)

 

(c)                                                       \bar{I}_{a}=j\left(\bar{I}_{f}-\bar{I}_{b}\right)=0

 

Or                                         \bar{I}_{f}=\bar{I}_{b}                                                       (i)

\bar{V}_{m}=\bar{V}_{m f}+\bar{V}_{m b}=220 V                                                         (ii)

\bar{V}_{a}=j\left(\bar{V}_{m f}-\bar{V}_{m b}\right)=?                                                                 (iii)

\bar{I}_{f}=\frac{\bar{V}_{m f}}{\bar{Z}_{f} \text { (total) }}=\frac{\bar{V}_{m b}}{\bar{Z}_{b} \text { (total) }}=\bar{I}_{b}

Or                                                        \frac{\bar{V}_{m f}}{\bar{V}_{m b}}=\frac{\bar{Z}_{f} \text { (total) }}{\bar{Z}_{b} \text { (total) }}                                   (iv)

=\frac{59 \angle 33^{\circ}}{6.83 \angle 51.4^{\circ}}=8.63 \angle-18.4^{\circ}                                                  (v)

Solving Eqs (ii) and (v)

\bar{V}_{m f}=198.2 \angle-1.9^{\circ}=198.1-j 6.6

 

\bar{V}_{m b}=22.96 \angle 16.5^{\circ}=22.01+j 6.5

 

\bar{V}_{a}=j(176.1-j 13.1)

 

=13.1+j 176.1=176.6 \angle 85.7^{\circ}

 

V_{a}=176.6 V

 

It may be seen that the angle of V_{a} is slightly short of 90°.

Related Answered Questions