Products
Rewards 
from HOLOOLY

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

HOLOOLY 
BUSINESS MANAGER

Advertise your business, and reach millions of students around the world.

HOLOOLY 
TABLES

All the data tables that you may search for.

HOLOOLY 
ARABIA

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

HOLOOLY 
TEXTBOOKS

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

HOLOOLY 
HELP DESK

Need Help? We got you covered.

Chapter 4

Q. 4.14

The dimensions of an overhang crank are given in Fig. 4.41. The force P acting at the crankpin is 1 kN. The crank is made of steel 30C8 \left(S_{v t}=400 N / mm ^{2}\right) and the factor of safety is 2. Using maximum shear stress theory of failure, determine the diameter d at the section – XX.

Step-by-Step

Verified Solution

\text { Given } P=1 kN \quad S_{y t}=400 N / mm ^{2} \quad(f s)=2 .

Step I Calculation of permissible shear stress
According to maximum shear stress theory,

S_{s y}=0.5 S_{y t}=0.5(400)=200 N / mm ^{2} .

The permissible shear stress is given by,

\tau_{\max .}=\frac{S_{s y}}{(f s)}=\frac{200}{2}=100 N / mm ^{2}       (i).

Step II Calculation of bending and torsional shear
stresses
The section of the crankpin at XX is subjected to combined bending and torsional moments. At the section XX,

M_{b}=1000 \times(50+25+100)=175 \times 10^{3} N – mm .

M_{t}=1000 \times 500=500 \times 10^{3} N – mm .

\sigma_{x}=\sigma_{b}=\frac{M_{b} y}{I}=\frac{\left(175 \times 10^{3}\right)(d / 2)}{\left(\pi d^{4} / 64\right)} .

=\left(\frac{1782.54 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

\sigma_{y}=0 .

\tau=\frac{M_{t} r}{J}=\frac{\left(500 \times 10^{3}\right)(d / 2)}{\left(\pi d^{4} / 32\right)} .

=\left(\frac{2546.48 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

Step III Calculation of maximum shear stress
The problem is similar to the previous one and the maximum shear stress is given by,

\tau_{\max }=\sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2}+(\tau)^{2}} .

=\sqrt{\left(\frac{1782.54 \times 10^{3}}{2 d^{3}}\right)^{2}+\left(\frac{2546.48 \times 10^{3}}{d^{3}}\right)^{2}} .

=\frac{2697.95 \times 10^{3}}{d^{3}} N / mm ^{2}            (ii).

Step IV Calculation of diameter at section-XX
Equating (i) and (ii),

\frac{2697.95 \times 10^{3}}{d^{3}}=100 \therefore d=29.99 \text { or } 30 mm .